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Abstract

We give an elementary introduction to the subject of trace inequalities and related topics
in analysis, with a special focus on results that are relevant to quantum statistical mechanics.
This is a preliminary draft prepared for participants in Entropy and the Quantum: A school on
analytic and functional inequalities with applications, Tucson, Arizona, March 16-20, 2009.
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1 Introduction

1.1 Basic definitions and notation

Let Mn denote the space of n× n matrices, which we sometimes refer to as operators on Cn. The
inner product on Cn, and other Hilbert spaces, shall be denoted by 〈·, ·〉, conjugate linear on the
left, and the Hermitian conjugate, or simply adjoint of an A ∈Mn shall be denoted by A∗.

Let Hn denote the n × n Hermitian matrices, i.e.; the subset of Mn consisting of matrices A
such that A∗ = A. There is a natural partial order on Hn: A matrix A ∈ Hn is said to be positive
semi-definite in case

〈v,Av〉 ≥ 0 for all v ∈ Cn , (1.1)

in which case we write A ≥ 0. A is said to positive definite in case the inequality in (1.1) is strict
for all v 6= 0 in Cn, in which case we write A > 0. Notice that in the finite dimensional case we
presently consider, A > 0 if and only A ≥ 0 and A is invertible.
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By the Spectral Theorem, A ≥ 0 if and only if all of the eigenvalues of A are non-negative,
which is the case if and only if there is some B ∈Mn such that A = B∗B.

Finally, we partially order Hn by defining A ≥ B to mean that A−B ≥ 0. We shall also write
A > B to mean that A−B > 0. Let H+

n denote the n× n positive definite matrices.
For A ∈Mn, the trace of A, Tr(A), is defined by

Tr(A) =
n∑
j=1

Aj,j .

For any A,B ∈Mn,

Tr(AB) =
n∑

i,j=1

Ai,jBj,i =
n∑

i,j=1

Bj,iAi,j = Tr(BA) . (1.2)

This is known as cyclicity of the trace. It tells us, for example that if {u1, . . . , un} is any orthonormal
basis for Cn, then

Tr(A) =
n∑
j=1

〈uj , Auj〉 . (1.3)

Indeed if U is the unitary matrix whose jth column is uj , (U∗AU)j,j = 〈uj , Auj〉, and then by
(1.2), Tr(U∗AU) = Tr(AUU∗) = Tr(A). Thus, Tr(A) is a unitarily invariant function of A, and
as such, depends only on the eigenvalues of A. In fact, taking {u1, . . . , un} to be an orthonormal
basis of Cn with Aujλjuj , j = 1, . . . , n, (1.2) yields

Tr(A) =
n∑
j=1

λj . (1.4)

An n× n density matrix is a matrix ρ ∈ H+
n with Tr(ρ) = 1. The symbols ρ (and σ) are tradi-

tional for density matrices, and they are the quantum mechanical analogs of probability densities,
and they are in one-to-one correspondence with the set of states of a quantum mechanical system
whose observable are self adjoint operators on Cn.

Let Sn denote the set of density matrices on Cn. This is a convex set, and it is easy to see that
the extreme points of Sn are precisely the rank one orthogonal projections on Cn. These are called
pure states

Of course in many, if not most, quantum mechanical systems, the observable are operators on
an infinite dimensional, but separable, Hilbert space H. It is easy to extend the definition of the
trace, and hence of density matrices, to this infinite dimensional setting. However, it is not hard
to show that any positive semi-definite operator ρ on H with Tr(ρ) = 1 is a compact operator, and
thus it may be approximated in the operator norm by a finite rank operator. Simon’s book [49]
contains a very elegant account of all this. Here we simply note that essentially for this reason, the
essential aspects of the inequalities for density matrices that we study here are contained in the
finite dimensional case, to which we restrict our attention for the most part of these notes.

1.2 Trace inequalities and entropy

Much of what we discuss here is directly related to some notion of entropy.
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1.1 DEFINITION. The von Neuman entropy of ρ ∈ Sn, S(ρ), is defined by

S(ρ) = −Tr(ρ log ρ) . (1.5)

The operator ρ log ρ ∈ Hn is defined using the Spectral Theorem which says that every operator
in A in Hn can be written in the form

A =
m∑
j=1

λjPj (1.6)

where the λj and the Pj are, respectively, the eigenvalues and spectral projections of A. For any
function f : R→ R, we then define the operator f(A) ∈ Hn by

f(A) =
m∑
j=1

f(λj)Pj . (1.7)

It is easily checked that if f is a polynomial in the real variable t, say f(t) =
∑k

j=0 ajt
j , then this

definition of f(A) coincides with the obvious one, namely f(A) =
∑k

j=0 ajA
j . A case that will be

of particular focus in these notes is f(t) = t log(t).
Given ρ ∈ Sn, let {u1, . . . , un} be an orthonormal basis of Cn consisting of eigenvectors of ρ:

ρuj = λjuj . Since ρ ≥ 0, each 0 ≤ λj for each j. Then by (1.3),
∑n

j=1 λj = 1, and so λj ≤ 1 for
each j. By (1.3) once more,

S(ρ) = −
n∑
j=1

λj log λj . (1.8)

That is, S(ρ) depends on ρ only through its eigenvalues. Otherwise put, the von Neumann entropy
is unitarily invariant; i.e.,

S(UρU∗) = S(ρ) . (1.9)

The fact that t 7→ t log(t) is strictly convex together with (1.8) tells us that

−S(ρ) = n
1
n

n∑
j=1

λj log λj ≤ n

 1
n

n∑
j=1

λj

 log

 1
n

n∑
j=1

λj

 = n

(
1
n

)
log
(

1
n

)
= − log(n) ,

and there is equality if and only if each λj = 1/n. Thus, we have

0 ≤ S(ρ) ≤ log n (1.10)

for all ρ ∈ Sn, and there is equality on the left iff ρ is a pure state, and there is equality on the
right iff ρ = (1/n)I.

Actually, S(ρ) is not only a strictly concave function of the eigenvalues of ρ, it is strictly concave
function of ρ itself.

That is, as we shall show in the next section,

S((1− t)ρ0 + tρ1) ≥ (1− t)S(ρ0) + tS(ρ1) (1.11)

for all ρ0, ρ1 ∈ Sn, with equality iff ρ0 = ρ1. This is much stronger than concavity as a function of
the eigenvalues since if ρ0 and ρ1 do not commute, the eigenvalues of (1− t)ρ0 + tρ1 are not even
determined by the eigenvalues of ρ0 and ρ1.
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Since we shall be focusing on convexity and concavity of trace functions in these notes, briefly
discuss one reason this concavity matters, starting with the simpler fact (1.10) that we have deduced
from the concavity of the entropy as a function of the eigenvalues of ρ.

In quantum statistical mechanics, equilibrium states are determined by by maximum entropy
principles, and the fact that

sup
ρ∈Sn

S(ρ) = log n (1.12)

reflects Boltzmann’s identity
S = k logW

which is engraved on his funerary monument in Vienna.
Often however, we are not interested in the unconstrained supremum in (1.12), but instead

the constrained supremum over states with a specified energy. In more detail, consider a quantum
system in which the observables are self adjoint operators on Cn, and in particular, in which the
energy is represented by H ∈ Hn. The (expected) value of the energy in the state ρ is given by
Tr(Hρ). We are then interested in computing

sup{ S(ρ) : ρ ∈ Sn ,Tr(Hρ) = E } .

To solve this problem, introduce a parameter β > 0, and define Φ(β,H) by

−βΦ(β,H) := sup{Tr(βHρ) + S(ρ) : ρ ∈ Sn} , (1.13)

which is the canonical free energy. For the more on the physical background, see [52], but for now
let us focus on the mathematical consequences.

It follows from the definition of Φ(β,H) that if ρ satisfies Tr(Hρ) = E, then

S(ρ) ≤ −βΦ(β,H)− βE .

It turns out, as we shall see, that the supremum in (1.13) – and hence Φ(β,H) – can be explicitly
computed. The key result is the fact that

−Tr(βHρ) ≤ log (Tr[exp(−βH)])− S(ρ) for all ρ ∈ Sn, H ∈ Hn, β > 0 . (1.14)

Moreover, there is equality in (1.14) if and only if

ρ = ρβ,H :=
1

Tr [e−βH ]
e−βH . (1.15)

Notice that
Tr(Hρβ,H) =

1
Tr [e−βH ]

Tr[He−βH ] = − d
dβ

log
(

Tr[e−βH ]
)
.

Now suppose that the smooth function

β 7→ log
(

Tr[e−βH ]
)

is strictly convex, as we shall see that it is. Then clearly β 7→ Tr(Hρβ,H) is strictly monotone
decreasing. Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of H arranged in increasing order. Then

Tr(Hρβ,H) =
1∑n

j=1 e
−βλj

n∑
j=1

λje
−βλj .
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It follows that
lim
β→∞

Tr(Hρβ,H) = λ1 and lim
β→−∞

Tr(Hρβ,H) = λn .

By the Spectral Theorem, λ1 ≤ Tr(Hρ) ≤ λn for all ρ ∈ Sn, and so for all E ∈ [λ1, λn], there is a
unique value of β ∈ R such that Tr(Hρβ,H). It then follows that, for this value of β and E,

S(ρβ,H) ≥ S(ρ) for all ρ ∈ Sn with Tr(Hρ) = E ,

and there is equality if and only if ρ = ρβ,H . Density matrices of the form ρβ,H are known as Gibbs
states, and this extremal property which characterizes them – that they maximize entropy given
the expected value of the energy – is intimately connected with their physical significance.

As we shall see in the next section, and have indicated here, this extremal property is intimately
connected with certain convexity, concavity and monotonicity properties of trace functions. In
particular, we shall see that (1.14), together with the fact that equality in it holds if and only if
ρ is given by (1.15) is a consequence of the strict concavity of ρ :7→ S(ρ). We emphasize that
“strict” matters: Without it, we would not have the characterization of the Gibbs states as entropy
maximizers.

In fact, the entropy is not the only trace function that matters in statistical mechanics: Even in
this very particular context of the entropy maximization problem, the proof of the key fact (1.14)
makes use of what is known as the relative entropy:

1.2 DEFINITION. The relative entropy of ρ ∈ Sn with respect to σ ∈ Sn, S(ρ|σ), is defined by

S(ρ|σ) = Tr(ρ log ρ)− Tr(ρ log σ) . (1.16)

As we shall see, (ρ, σ) 7→ S(ρ|σ) is jointly convex in that for all ρ0, ρ1σ0, σ1 ∈ Sn and any
0 ≤ t ≤ 1,

S((1− t)ρ0 + tρ1|(1− t)σ0 + tσ1) ≤ (1− t)S(ρ0|σ0) + tS(ρ1|σ1) . (1.17)

This is a deeper fact than is needed to prove (1.14) – which only requires Klein’s inequality; i.e.,
the fact that S(ρ|σ) ≥ 0 with equality if and only if σ = ρ. We give proofs of Klein’s inequality
and (1.14) in Section 2, and show them both to be direct consequences of the strict concavity of
the von Neuman entropy.

The joint convexity of S(ρ|σ) is, however, much deeper than the strict concavity of the von
Neuman entropy. Its proof, and its applications, shall have to wait until later. The ideas leading to
the proof are closely connected with yet another type of “entropy”; i.e., the Wigner-Yanase skew
information.

The notions of “entropy” and “information” are distinct, but closely intertwined. The Shannon
information content I(ρ) of a density matrix ρ ∈ Sn is defined by IS(ρ) = −S(ρ). See [35] for a
discussion of this definition. Note that with this definition, the information content of any pure
state ρ is zero.

However, for a quantum mechanical system in which the observables are self adjoint operators
on Cn, and in which the energy is the observable H ∈ Sn, some states are easier to measure than
others: Those that commute with H are easy to measure, and those that do not are more difficult
to measure. This led Wigner and Yanase [58, 59] to introduce the Wigner-Yanase skew information
IWY (ρ) of a density matrix ρ in a quantum mechanical system with energy operator H to be

IWY (ρ) = −1
2

Tr
(
[
√
ρ,H]2

)
.
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Note that
IWY (ρ) = TrH2ρ− Tr

√
ρH
√
ρH , (1.18)

which vanishes if and only if ρ commutes with H.
Wigner and Yanase [58, 59] proved that ρ 7→ IWY (ρ) is convex on Sn in that

IWY ((1− t)ρ0 + tρ1) ≤ (1− t)IWY (ρ0) + tIWY (ρ1) , (1.19)

and explained the information thoeretic consequences of this. From the formula (1.18), it is clear
that convexity of ρ 7→ IWY (ρ) amounts to concavity of ρ 7→ Tr

√
ρH
√
ρH, which they proved. Even

though this is convexity result for one variable, and not a joint convexity result, it too is much
harder to prove than the concavity of the von Neuman entropy, or what is the same thing, the
convexity of the Shannon information.

Wigner and Yanase left open the more general problem of concavity of

ρ 7→ Tr(ρpKρ1−pK∗) (1.20)

for 0 < p < 1, p 6= 1/2. (Dyson had raised the issue of proving this more general case.) Lieb realized
that this problem was closely connected with something then known as the strong subadditivity of
quantum entropy conjecture, which was due to Ruelle and Robinson. Lieb [34] proved proved
the convexity of the function in (1.20) for all 0 < p < 1, and this deep result is known as the
Lieb Concavity Theorem. Then he and Ruskai applied it to prove [37] the strong subadditivity of
quantum entropy conjecture. Later in these notes we shall explain what this strong subadditivity
is, why it is significant, and give several proofs of it.

For now, we mention that strong subadditivity of the entropy is an example of an trace inequality
for density matrices acting on a tensor product of Hilbert spaces – H1⊗H2⊗H3 in this case – that
involves partial traces. The different Hilbert spaces correspond to different parts of the quantum
mechanical system: Here, H1, H1 and H3 are the state spaces for degrees of freedom in various
subsystems of the whole system, and it is often important to estimate the entropy of a density
matrix ρ on the whole system in terms of the entropies of induced density matrices on the various
subsystems. Later in these notes, we shall extensively develop this general topic, and inequalities
for tensor products are absolutely fundamental throughout the subject. In fact, the easiest (by far)
proof of the Lieb Concavity Theorem proceeds through a simple tensor product argument devised
by Ando [1].

Before entering fully into our subject, let us close the introduction by emphasizing that in our
exposition, we shall provide full mathematical detail and context, but we shall be comparatively
sketchy when it comes to physical detail and context. There are many excellent accounts of the
physics behind the definitions of S(ρ), S(ρ|σ) and IWY (ρ) and other mathematical constructions
that we shall encounter here. Thirring’s book [52] is an especially good reference for much of this.
It is especially good at connecting the physics with the rigorous mathematics, but still, what we
do here provides a mathematical complement to it. For example, [52] does not contain a full proof
of the joint convexity of S(ρ|σ). It only give the simple argument which reduces this to the Lieb
Concavity Theorem, about which it says: “The proof of this rather deep proposition . . . is too
laborious to be repeated here”. In fact, as we shall see, one can give a very simple, clean and clear
proof of this. The point of view that leads to this simple proof is due to Ando [1], and as we shall
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see, it provides insight into a number of other interesting questions as well. We now turn to the
systematic development of our subject – inequalities for operators and traces, with special focus on
monotonicity and convexity.

2 Operator convexity and monotonicity

2.1 Some examples and the Löwner-Heinz Theorem

2.1 DEFINITION (Operator monotonicity and operator convexity). A function f : (0,∞)→ R
is said to be operator monotone in case whenever for all n, and all A,B ∈ H+

n ,

A > B ⇒ f(A) > f(B) . (2.1)

A function f : (0,∞) → R is said to be operator convex in case for all n and all A,B ∈ H+
n ,

and 0 < t < 1,
f((1− t)A+ tB) ≤ tf(A) + (1− t)f(B) . (2.2)

We sat that f is operator concave if −f is operator convex.

By considering the case of 1 × 1 matrices, or diagonal matrices in Hn, one sees that if f is
monotone or convex in the operator sense, then it must be monotone or convex in the usual sense
as a function from (0,∞) to R. The opposite is not true.

2.2 EXAMPLE (Non-monotoncity of the square). The function f(t) = t2 is monotone in the
usual sense, but for A,B ∈ H+

n ,

(A+B)2 = A2 + (AB +BA) +B2 .

For any choice of A and B such that AB+BA has even one strictly negative eigenvalue, (A+tB)2 ≥
A2 will fail for all sufficiently small t. It is easy to find such A and B in H+

n . For example, take

A =

[
1 1
1 1

]
and B =

[
1 0
0 0

]
, (2.3)

so that

AB +BA =

[
2 1
1 0

]
.

Thus, not even the square function is operator monotone.

It urns out, however, that the square root function is operator monotone. This is an important
theorem of Heinz [28]. The proof we give is due to Kato [32]; see [21] for its specialization to the
matrix case, which we present here.

2.3 EXAMPLE (Monotoncity of the square root). The square root function, f(t) = t1/2, is
operator monotone. To see this, it suffices to show that if A,B ∈ H+

n and A2 ≤ B2, then A ≤ B.
Towards this end, consider any eigenvalue λ of the Hermitian matrix B−A, and let u be a unit

vector that is an eigenvector with this eigenvalue. We must show that λ ≥ 0. Observe that

(B − λ)u = Au ⇒ 〈Bu, (B − λ)u〉 = 〈Bu,Au〉 .
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Then by the Schwarz inequality,

‖Bu‖2 − 〈u,B2u〉 ≤ ‖Bu‖‖Au‖ .

But since A2 ≤ B2,
‖Bu‖‖Au‖ = 〈u,B2u〉1/2〈u,A2u〉1/2 ≤ 〈u,B2u〉 ,

we have
‖Bu‖2 − 〈u,B2u〉 ≤ ‖Bu‖2 ,

and this shown that λ〈u,B2u〉 ≥ 0, and hence λ ≥ 0.

We now give two examples pertaining to convexity:

2.4 EXAMPLE (Convexity of the square). The square function is operator convex: One has the
parallelogram law (

A+B

2

)2

+
(
A−B

2

)2

=
1
2
A2 +

1
2
B2 ,

so certainly for f(t) = t2, one always has (2.2) for t = 1/2, which is known as midpoint convexity.
A standard argument then gives (2.2) whenever t is a dyadic rational, and then by continuity one
has it for all t, in (0, 1) of course. We will often use this fact that in the presence of continuity, it
suffices to check midpoint convexity.

2.5 EXAMPLE (Non-convexity of the cube). The cube function is not operator convex. To easily
see this, let us deduce a consequence of (2.2) that must hold for any operator convex function f :
Take A,B ∈ H+

n , and all 0 < t < 1, and note that

A+ tB = (1− t)A+ t(A+B) .

Thus, from (2.2), f(A+ tB) ≤ (1− t)f(A) + tf(B) which yields

f(A+ tB)− f(A)
t

≤ f(A+B)− f(A) . (2.4)

Taking f to be the cube function, and then letting t tend to zero in (2.4), we see that convexity of
the cube function would imply that for all A,B ∈ H+

n ,

(B3 +BAB) + (AB2 +B2A) ≥ 0 .

This fails for A,B chosen exactly as in (2.3); indeed, note that for this choice B3 = B2 = BAB = B,
so that

(B3 +BAB) + (AB2 +B2A) =

[
4 1
1 0

]
,

which is definitely not not positive semi-definite!

After seeing these negative examples, one might suspect that the notions of operator mono-
tonicity and operator convexity are too restrictive to be of any interest. Fortunately, this is not the
case. The following result furnishes a great many positive examples.
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2.6 THEOREM (Löwner-Heinz Theorem). For −1 ≤ p ≤ 0, the function f(t) = −tp is operator
monotone and operator concave. For 0 ≤ p ≤ 1, the function f(t) = tp is operator monotone
and operator concave. For 1 ≤ p ≤ 2, the function f(t) = tp and operator convex. Furthermore
f(t) = log(t) is operator concave and operator monotone, while f(t) = f log(t) is operator convex.

Löwner actually proved more; he gave a necessary and sufficient condition for f to be operator
monotone. But what we have stated is all the we shall use.

We shall give an elementary proof of Theorem 2.6 after first proving two lemmas. The first
lemma addresses the special case f(t) = t−1.

2.7 LEMMA. The function f(t) = t−1 is operator convex, and the f(t) = −t−1 is operator
monotone.

Proof: We begin with the monotonicity. Let A,B ∈ H+
n . Let C = A−1/2BA−1/2 so that

A−1 − (A+B)−1 = A1/2[I − (I + C)−1]A1/2 .

Since C ∈ H+
n , I − (I + C)−1 ∈ H+

n , and hence A1/2[I − (I + C)−1]A1/2 > 0. This proves the
monotonicity.

Similarly, to prove midpoint convexity, we have

1
2
A−1 +

1
2
B−1 −

(
A+B

2

)−1

= A−1

[
1
2
I +

1
2
C−1 −

(
I + C

2

)−1
]
A−1/2 .

By the arithmetic-harmonic mean inequality, for any real numbers a, b > 0,

a+ c

2
≥
(
a−1 + b−1

2

)−1

.

Applying this with a = 1 and c any eigenvalue of C−1, we see from the Spectral Theorem that[
1
2
I +

1
2
C−1 −

(
I + C

2

)−1
]
≥ 0 ,

from which
1
2
A−1 +

1
2
B−1 −

(
A+B

2

)−1

≥ 0

follows directly. Again, by continuity, the full convexity we seek follows from the midpoint convexity
that we have now proved.

The other ingredient to the proof of Theorem 2.6 is a set of integral representations for the
functions A 7→ Ap in Hn for p in the ranges −1 < p < 0, 0 < p < 1 and 1 < p < 2:

2.8 LEMMA. For all A ∈ Hn, one has the following integral formulas:

Ap =
π

sin(π(p+ 1))

∫ ∞
0

tp
1

t+A
dt for all − 1 < p < 0 . (2.5)

Ap =
π

sin(πp)

∫ ∞
0

tp
(

1
t
− 1
t+A

)
dt for all 0 < p < 1 . (2.6)

Ap =
π

sin(π(p− 1))

∫ ∞
0

tp
(
A

t
+

t

t+A
− I
)

dt for all 1 < p < 2 . (2.7)
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Proof: For all a > 0, and all 0 < p < 1 the integral
∫ ∞

0
tp
(

1
t
− 1
t+ a

)
dt converges since the

singularity at the origin is O(tp−1) and the decay at infinity is O(tp−2). Making the change of
variables t = as, it is then easy to see that the integral is a constant multiple of ap, where the
constant depends only on p. This is all we need, but in fact a simple contour integral calculation
yields the explicit result

ap =
π

sin(πp)

∫ ∞
0

tp
(

1
t
− 1
t+ a

)
dt .

Multiplying by a, we get

ap+1 =
π

sin(πp)

∫ ∞
0

tp
(
a

t
+

t

t+ a
− I
)

dt .

Dividing by a, we get

ap−1 =
π

sin(πp)

∫ ∞
0

tp−1 1
t+ a

dt .

The formulas (2.5),(2.6) and (2.7) now follow by the Spectral Theorem.

Proof of Theorem 2.6: Note that Lemma 2.7 yields the concavity and monotonicity of A 7→ Ap

for p = −1. The case p = 0 is trivial, and we have already directly established the convexity (and
the non-monotonicity) for p = 2. For non-integer values of p, we use Lemma 2.8 to reduce to the
case p = −1.

By Lemma 2.7, the map A 7→ −(t + A)−1 is operator concave and operator monotone. Any
weighted sum (with positive weights) of operator concave and operator monotone functions is again
operator concave and operator monotone. For −1 < p < 0, (2.5) sats that −Ap is such a weighted
sum, and so A 7→ Ap is operator convex, and A 7→ −Ap is operator monotone in this range. A very
similar argument shows that for 0 < p < 1, A 7→ Ap is operator concave and operator monotone.

The case 1 < p < 2 is a bit different: By Lemma 2.7, the map

A 7→ A

t
+

t

t+A

is a sum of operator convex functions, and hence is operator convex. However, it is a difference
of operator monotone functions, and is not operator monotone. Hence all that we can conclude is
that A 7→ Ap is convex in this range. (Indeed, we have seen that the monotonicity fails at p = 2,
and so monotonicity, which is preserved under limits, cannot hold for p near 2.)

Finally, again by the Spectral Theorem,

log(A) = lim
p→0

p(Ap − I) and A log(A) = lim
p→1

Ap −A
p− 1

(2.8)

Since the map A 7→ p(Ap − I) has been shown to be operator monotone and operator concave for
all p ∈ [−1, 1], and since these properties are preserved under limits taken in (2.8), we see that
A 7→ log(A) is operator monotone and operator concave. Likewise, since A 7→ (p− 1)−1(Ap−A) is
convex for all p 6= 1 in the interval [0, 2], we see that A 7→ A log(A) is operator convex.

We close this subsection by remarking that Löwner has proved a necessary and sufficient con-
dition for f : (0,∞) → R to be operator monotone: This is the case if and only if f admits an
integral representation

f(a) = α+ βa−
∫ ∞

0

1− at
t+ a

dµ(t)

for some α, β ∈ R, and some finite positive measure µ.
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2.2 Convexity and monotonicity for trace functions

Given a function f : R→ R, consider the associated trace function on Hn given by

A 7→ Tr[f(A)] .

In this subsection we address the question: Under what conditions on f is such a trace function
monotone, and under what conditions on f is it convex? We shall see that much less is required of
f in this context than is required for operator monotonicity or operator convexity. Notice first of
all that we are working now on Hn and not only H+

n , and with functions defined on all of R and
not only on (0,∞).

The question concerning monotonicity is very simple. Suppose that f is continuously differen-
tiable. Let B,C ∈ H+

n . Then by the Spectral Theorem and first order perturbation theory,

d
dt

Tr(f(B + tC))
∣∣
t=0

= Tr(f ′(B)C = Tr(C1/2f ′(B)C1/2) ,

where in the last step we have used cyclicity of the trace. As long as f has a positive derivative,
all of the eigenvalues of f ′(B) will be positive, and so f ′(B) is positive semi-definite, and therefore
so is C1/2f ′(B)C1/2. It follows immediately that Tr(C1/2f ′(B)C1/2) ≥ 0, and form here one easily
sees that for A ≥ B, and with C = A−B,

Tr[f(A)]− Tr[f(B)] =
∫ 1

0
Tr(C1/2f ′(A+ tB)C1/2)dt ≥ 0 .

Thus, Tr[f(A)] ≥ Tr[f(B)] whenever A > B and f is continuously differentiable and monotone in-
creasing. By an obvious continuity argument, one may relax the requirement that f be continuously
differentiable to the requirement that f be continuous.

The question concerning convexity is more interesting. Here we have the following theorem:

2.9 THEOREM (Peierls Inequality). Let A ∈ Hn, and let f be any convex function on R. Let
{u1, . . . , un} be any orthonormal base of Cn. Then

n∑
j=1

f (〈uj , Auj〉) ≤ Tr[f(A)] . (2.9)

There is equality if each uj is an eigenvector of A, and if f is strictly convex, only in this case.

Proof: By (1.3) together with the spectral representation (1.7),

Tr[f(A)] =
n∑
j=1

〈
uj

[
m∑
k=1

f(λk)Pk

]
uj

〉

=
n∑
j=1

(
m∑
k=1

f(λk)‖Pkuj‖2
)

≥
n∑
j=1

f

(
m∑
k=1

λk‖Pkuj‖2
)

(2.10)

=
n∑
j=1

f (〈uj , Auj〉) .
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The inequality above is simply the convexity of f , since for each j,
∑m

k=1 ‖Pkuj‖2 = ‖uj‖2 = 1,
and thus

∑m
k=1 λk‖Pkuj‖2 is a weighted average of the eigenvalues of A. Note that each uj is an

eigenvector of A if and only if ‖Pkuj‖2 = 1 for some k, and is 0 otherwise, in which case the
inequality in (2.10) is a trivial equality. And clearly when f is strictly convex, equality can hold in
(2.10) only if for each j, ‖Pkuj‖2 = 1 for some k, and is 0 otherwise.

Now consider A,B ∈ Hn, and let f : R → R be convex. Let {u1, . . . , un} be an orthonormal
basis of Cn consisting of eigenvectors of (A+B)/2. Then, Theorem 2.9,

Tr
[
f

(
A+B

2

)]
=

n∑
j=1

f

(〈
uj ,

A+B

2
uj

〉)

=
n∑
j=1

f

(
1
2
〈uj , Auj〉+

1
2
〈uj , Buj〉

)

≤
n∑
j=1

[
1
2
f(〈uj , Auj〉) +

1
2
f(〈uj , Buj〉)

]
(2.11)

≤ 1
2

Tr[f(A)] +
1
2

Tr[f(B)] . (2.12)

where we have used Theorem 2.9, in the first equality, and where in (2.11) we have used the
(midpoint) convexity of f , and in (2.12) we have used Theorem 2.9 again.

This shows that for every natural number n, whenever f is midpoint convex, the map A 7→
Tr[f(A)] is midpoint convex on Hn. Note that if f is strictly convex and Tr[f(A + B)/2] =
Tr[f(A)]/2 + Tr[f(A)]/2, we must have equality in both (2.11) and (2.12). On account of the strict
convexity of f , equality in (2.11) implies that 〈uj , Auj〉 = 〈uj , Buj〉 for each uj . By the conditions
for equality in Peierl’s inequality, equality in (2.11) implies that each uj is an eigenvector of both
A and B. Thus,

Auj = 〈uj , Auj〉uj = 〈uj , Buj〉ujuj = Buj ,

and so A = B.
An obvious continuity argument now shows that if f continuous as well as convex, A 7→ Tr[f(A)]

is convex on Hn, and strictly so if f is strictly convex.
Let us summarize some conclusions we have drawn so far in a theorem:

2.10 THEOREM (Convexity and monotonicty of trace functions). Let f : R→ R be continuous,
and let n be any natural number. Then if t 7→ f(t) is monotone increasing, so is A 7→ Tr[f(A)]
on Hn. Likewise, if t 7→ f(t) is convex, so is A 7→ Tr[f(A)] on Hn, and strictly so if f is strictly
convex.

2.3 Klien’s Inequality and The Peierls-Bogoliubov Inequality

We close this section with three trace theorems that have significant applications in statistical
quantum mechanics.

2.11 THEOREM (Klien’s Inequality). For all A,B ∈ Hn, and all convex functions f : R → R,
or for all A,B ∈ H+

n , and all convex functions f : (0,∞)→ R

Tr[f(A)− f(B)− (A−B)f ′(B)] ≥ 0 . (2.13)
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In either case, if f is strictly convex, there is equality if and only if A = B.

Proof: Let C = A−B so that for 0 < t < 1, B+ tC = (1− t)B+ tA. Define ϕ(t) = Tr[f(B+ tC)].
By Theorem 2.10, ϕ is convex, and so for all 0 < t < 1,

ϕ(1) = ϕ(0) ≥ ϕ(t) = ϕ(0)
t

,

and in fact the right hand side is monotone decreasing in t. Taking the limit t → 0 yields (2.13).
Note that if f is strictly convex and C 6= 0, then ϕ is strictly convex. The final assertion follows
from this and the monotonicity noted above.

2.12 THEOREM (Peierls-Bogoliubov Inequality). For every natural number n, the map

A 7→ log (Tr[exp(A)])

is convex on Hn

Remark The appellation “Peierls-Bogoliubov Inequality” has been attached to many inequalities
by many authors. It is often used to refer to the inequality one gets as a consequence of Theorem 2.12
and the “increasing chordal slope argument” used to prove Klien’s inequality.

Indeed, for any A,B ∈ Hn, and any 0 < t < 1, let ψ(t) be the function

t 7→ log (Tr[exp(A+ tB)]) .

By Theorem 2.12, this is convex, and hence

ψ(1)− ψ(0) ≥ ψ(t)− ψ(0)
t

for all t. Taking the limit t→ 0, we obtain

log
(

Tr[eA+B]
Tr[eA]

)
≥ Tr[BeA]

Tr[eA]
. (2.14)

Frequently this consequence of Theorem 2.12, which has many uses, is referred to as the Peierls-
Bogoliubov Inequality.

Proof of Theorem 2.12: We first define ϕ : Rn → R by ϕ(x) = log

(
n∑
k=1

exk

)
. A simple

computation of the Hessian matrix of ϕ yields

∂2

∂xi∂xj
ϕ(x) = ajδi,j − aiaj where ai =

exi∑n
k=1 e

xk
.

Hence for any y ∈ Rn,

n∑
i,j=1

∂2

∂xi∂xj
ϕ(x)yiyj =

n∑
j=1

ajy
2
j −

 n∑
j=1

ajyj

2

.
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Then by the Schwarz inequality, and the fact that
∑n

j=1 aj = 1,

∣∣∣∣∣∣
n∑
j=1

ajyj

∣∣∣∣∣∣ ≤
n∑
j=1

ajy
2
j . Thus, the

Hessian matrix of ϕ is non-negative at each x ∈ Rn, and hence ϕ is convex. Hence, for any x, y ∈ Rn,

ϕ

(
x+ y

2

)
≤ 1

2
ϕ(x) +

1
2
ϕ(y) . (2.15)

To apply this, let A,B ∈ Hn, and let {u1, . . . , un} be any orthonormal basis of Cn. For each
j = 1, . . . , n, let xj = 〈uj , Auj〉 and yj = 〈uj , Buj〉, and let x and y be the corresponding vectors in
Rn. Then if we take {u1, . . . , un} to consist of eigenvectors of (A+B)/2, we have from Theorem 2.9
that

log
(

Tr
[
exp

(
A+B

2

)])
= log

 n∑
j=1

exp
〈
uj ,

A+B

2
uj

〉 = ϕ

(
x+ y

2

)
. (2.16)

Now, again by Theorem 2.9, Tr[exp(A)] ≥
n∑
j=1

exp(〈uj , Auj〉), and so by the monotonicity of the

logarithm, and the definition of x and ϕ(x), log(Tr[exp(A)]) ≥ ϕ(x). A similar argument yields
log(Tr[exp(B)]) ≥ ϕ(y). Combining these last two inequalities with (2.15) and (2.16) proves the
theorem.

Not only are both of the functions H 7→ log
(
Tr[eH ]

)
and ρ 7→ −S(ρ) both convex, they are

Legendre Transforms of one another. (See [44] for a full mathematical treatment of the Legendre
transform.) Before proving this result, which is essential (1.14) from the introduction, we first
extend the domain of S to all of Hn:

S(A) :=

{
−Tr(A lnA) A ∈ Sn,

−∞ otherwise.
(2.17)

2.13 THEOREM (Duality formula for the entropy). For all A ∈ Hn,

−S(A) = sup
{

Tr(AH)− ln
(
Tr
[
eH
])

: H ∈ Hn

}
. (2.18)

The supremum is an attained maximum if and only if A is a strictly positive probability density, in
which case it is attained at H if and only if H = lnA + cI for some c ∈ R. Consequently, for all
H ∈ Hn,

ln
(
Tr
[
eH
])

= sup {Tr(AH) + S(A) : A ∈ Hn} . (2.19)

The supremum is a maximum at all points of the domain of ln
(
Tr
(
eH
))

, in which case it is attained
only at the single point A = eH/(Tr(eH)).

Proof: To see that the supremum is ∞ unless 0 ≤ A ≤ I, let c be any real number, and let u be
any unit vector. Then let H be c times the orthogonal projection onto u. For this choice of H,

Tr(AH)− ln
(
Tr
(
eH
))

= c〈u,Au〉 − ln(ec + (n− 1)) .

If 〈u,Au〉 < 0, this tends to ∞ as c tends to −∞. If 〈u,Au〉 > 1, this tends to ∞ as c tends to ∞.
Hence we need only consider 0 ≤ A ≤ I. Next, taking H = cI, c ∈ R,

Tr(AH)− ln
(
Tr
(
eH
))

= cTr(A)− c− ln(n) .
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Unless Tr(A) = 1, this tends to ∞ as c tends to ∞. Hence we need only consider the case that A
is a density matrix ρ.

Hence, consider any ρ ∈ Sn, and let H be any self-adjoint operator such that Tr(eH) < ∞.
Then define the density matrix σ by

σ =
eH

Tr(eH)
.

By Klein’s inequality, Tr(ρ ln ρ−ρ lnσ) ≥ 0 with equality if and only if σ = ρ. But by the definition
of σ, this reduces to

Tr(ρ ln ρ) ≥ Tr(ρH)− ln
(
Tr
(
eH
))

,

with equality if and only if H = ln ρ. From here, there rest is very simple.

As we have explained in the introduction, (1.14), which is now justified by Theorem 2.13 shows
that the Gibbs states maximize the energy given the expected value of the energy.

3 The joint convexity of certain operator functions

The route to the proof of the joint convexity of the relative entropy passes through the investigation
of joint convexity for certain operator functions. This section treats three important examples.

3.1 The joint convexity of the map (A, B) 7→ B∗A−1B∗ on H+
n ×Mn

In this section we shall prove the joint convexity or joint concavity of certain operator functions
certain operator functions. Our first example concern the map (A,B) 7→ B∗A−1B∗ on H+

n ×Mn

which we shall show to be convex. Our next two examples concern the operator version of the
harmonic and geometric means of two operators A,B ∈ H+

n . We shall show that these are jointly
concave.

All of three proofs follow the same pattern: In each of them, we show that the function in
question has a certain maximality or minimality property, and we then easily prove the concavity
or convexity as a consequence of this. All three proofs are taken from Ando’s paper [1] Here is the
main theorem of this subsection:

3.1 THEOREM. The map (A,B) 7→ B∗A−1B from H+
n ×Mn to H+

n is jointly convex. That is,
for all (A0, B0), (A1, B1) ∈ H+

n ×Mn, and all 0 < t < 1,

[(1− t)B0 + tB1]∗
1

(1− t)A0 + tA1
[(1− t)B0 + tB1] ≤ (1− t)B∗0A−1

0 B0 + tB∗1A
−1
1 B1 . (3.1)

We remark that as a special case, this yields another proof that A 7→ A−1 and B 7→ B∗B are
convex.

The following lemma expresses a well-known minimality property of the functions B 7→
B∗A−1B.

3.2 LEMMA. Let A,C ∈ H+
n with A invertible, and let B ∈Mn. Then the 2n× 2n block matrix[

A B

B∗ C

]
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is positive semi-definite if and only if C ≥ B∗A−1B.

Proof: Define D := C −B∗A−1B∗, so that[
A B

B∗ C

]
=

[
A B

B∗ B∗A−1B

]
+

[
0 0
0 D

]
.

Now notice that[
A B

B∗ B∗A−1B

]
=

[
A1/2 A−1/2B

0 0

]∗ [
A1/2 A−1/2B

0 0

]
≥ 0 . (3.2)

Hence, positive semi-definiteness of D is sufficient to ensure that

[
A B

B∗ C

]
is positive semi-

definite.

It is also evident from the factorization (3.2) that for any v ∈ Cn, the vector

[
A−1Bv

v

]
belongs

to the null space of

[
A B

B∗ B∗A−1B

]
, so that

〈[
A−1Bv

v

]
,

[
A B

B∗ B

][
A−1Bv

v

]〉
= 〈v,Dv〉 ,

and hence positive semi-definiteness of D is necessary to ensure that

[
A B

B∗ C

]
is positive semi-

definite.

Lemma 3.2 says that the set of matrices C ∈ H+
n such that

[
A B

B∗ C

]
is positive semi-definite

has a minimum, namely C = B∗A−1B∗. Form this, Ando draws a significant conclusion:
Proof of Theorem 3.1: By Lemma 3.2,

(1− t)

[
A0 B0

B∗0 B∗0A
−1
0 B0

]
+ t

[
A1 B1

B∗1 B∗1A
−1
1 B1

]

is a convex combination of positive semi-definite matrices, and is therefore positive semi-definite.
It is also equal to [

(1− t)A0 + tA1 (1− t)B0 + tB1

(1− t)B∗0 + tB∗1 (1− t)B∗0A
−1
0 B0 + tB∗1A

−1
1 B1

]
.

Now (3.1) follows by one more application of Lemma 3.2.

3.2 Joint concavity of the harmonic mean

Ando also uses Lemma 3.2 to prove a theorem of Anderson and Duffin on the concavity of the
harmonic mean for operators.
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3.3 DEFINITION. For A,B ∈ H+
n , the harmonic mean of A and B, M−1(A,B) is defined by

M−1(A,B) =
(
A−1 +B−1

2

)−1

.

3.4 THEOREM (Joint concavity of the harmonic mean). The map (A,B) 7→ M−1(A,B) on
H+
n × hnp is jointly concave.

Proof: Note that

B −B(A+B)−1B = B(A+B)−1(A+B)−B(A+B)−1B = A(A+B)−1B , (3.3)

and also
(A(A+B)−1B)−1 = B−1(A+B)A−1 = A−1 +B−1 .

It follows that
M−1(A,B) = 2B − 2B(A+B)−1B , (3.4)

and this is jointly concave by Lemma 3.2.
Here we have used the minimality property in Lemma 3.2 implicitly, but there is another way

to proceed: It turns out that the harmonic has a certain maximality property:

3.5 THEOREM (Ando’s variational formula for the harmonic mean). For all A,B ∈ H+
n , the set

of all C ∈ Hn such that

2

[
A 0
0 B

]
−

[
C C

C C

]
> 0

has a maximal element, which is M−1(A,B).

We remark that this maximum property of the harmonic mean gives another proof of the con-
cavity of the harmonic mean, just as the minimum property of (A,B) 7→ B∗A−1B from Lemma 3.2
gave proof of the convexity of this function.

Proof of Theorem 3.5: Note that as a consequence of (3.3), (3.4) and the fact that M−1(A,B) =
M−1(B,A), we have

M−1(B,A) = [A−A(A+B)−1A] + [B −B(A+B)−1B]

= A(A+B)−1B +B(A+B)−1A , (3.5)

from which it follows that

2M−1(A,B) = (A+B)− (A−B)
1

A+B
(A−B) . (3.6)

Incidentally, we remark that from this identity one easily see the harmonic-arithmetic mean in-
equality: M−1(A,B) ≥ (A+B)/2 with equality if and only if A = B.)

Furthermore, by Lemma 3.2 ,

[
A+B A−B
A−B A+B

]
−

[
2C 0
0 0

]
≥ 0 if and only if

(A+B)− 2C ≥ (A−B)(A+B)−1(A−B) ,
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and by (3.6), this is the case if and only if C ≤M−1(A,B). Finally since[
A+B A−B
A−B A+B

]
−

[
2C 0
0 0

]
> 0 ⇐⇒ 2

[
A 0
0 B

]
−

[
C C

C C

]
> 0 .

3.3 Joint concavity of the geometric mean

3.6 DEFINITION. For A,B ∈ H+
n , the geometric mean of A and B, M0(A,B) is defined by

M0(A,B) = A1/2(A−1/2BA−1/2)1/2A1/2 .

We note that if A and B commute, this definition reduces to M0(A,B) = A1/2B1/2. While it is
not immediately clear from the defining formula that in general one has that M0(A,B) = M0(B,A),
this is clear from the following variational formula of Ando:

3.7 THEOREM (Ando’s variational formula for the geometric mean). For all A,B ∈ H+
n , the

set of all C ∈ Hn such that [
A C

C B

]
> 0

has a maximal element, which is M0(A,B).

Proof: If

[
A C

C B

]
> 0, then by Lemma 3.2, B ≥ CA−1C, and hence

A−1/2BA−1/2 ≥ A−1/2CA−1CA−1/2 = (A−1/2CA−1/2)2 .

By the operator monotonicity of the square root functions, which has been proved in Example 2.3
and as a special case of the Löwner-Heinz Theorem,

A1/2(A−1/2BA−1/2)1/2A1/2 ≤ C .

This shows the maximality property of M0(A,B).

3.8 THEOREM (Joint concavity of the geometric mean). The map (A,B) 7→ M0(A,B) on
H+
n ×H+

n is jointly concave, and is symmetric in A and B. Moreover, for any non-singular matrix
D ∈Mn,

M0(D∗AD,D∗BD) = D∗M0(A,B)D . (3.7)

Finally, (A,B) 7→M0(A,B) is monotone increasing in each variable.

Proof: The argument for the concavity is by now familiar. For (3.7), note that[
A C

C B

]
> 0 ⇐⇒

[
D∗AD D∗CD

D∗CD D∗BD

]
> 0 .

Finally, for fixed A, the fact that B 7→ A1/2(A−1/2BA−1/2)1/2A1/2 = M0(A,B) is a direct conse-
quence of the monotonicity of the square root function, which is contained in Theorem 2.6. By
symmetry, for fixed B, A 7→M0(A,B) is monotone increasing.
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3.4 The arithmetic-geomemtric-harmonic mean inequality

Letting M1(A,B) denote the arithmetic mean of A and B; i.e.,

M1(A,B) =
A+B

2
.

3.9 THEOREM ( Arithmetic-Geomemtric-Harmonic Mean Inequality). For all A,B ∈ H+
n ,

M1(A,B) ≥M0(A,B) ≥M−1(A,B) ,

with strict inequality everywhere unless A = B.

Proof: We first note that one can also use (3.5) to deduce that for all A,B ∈ H+
n and nonsingular

D ∈Mn,
M−1(D∗AD,D∗BD) = D∗M−1(A,B)D (3.8)

in the same way that we deduced (3.7). However, (3.8) can also be deduced very simply from the
formula that defines M−1(A,B).

We now show that (3.7) and (3.8) together reduce the proof the corresponding inequality for
numbers [31], which is quite elementary. To see this, take D = A−1/2 and letting L = A−1/2BA−1/2,
we have from the obvious companion for M1(A,B) to (3.7) and (3.8) that

M1(A,B)−M0(A,B) = A1/2[M1(I, L)−M0(I, L)]A1/2

=
1
2
A1/2

[
I + L− 2L1/2

]
A1/2

=
1
2
A1/2(I − L1/2)2A1/2 .

The right hand side is evidently positive semi-definite, and even positive definite unless L = I,
which is the case if and only if A = B. Likewise,

M0(A,B)−M−1(A,B) = A1/2[M0(I, L)−M−1(I, L)]A1/2

= A1/2(L1/2 − 2(I + L−1)−1)2A1/2 .

The right hand side is positive semi-definite by the Spectral Theorem and the geometric-harmonic
mean inequality for positive numbers, and even positive definite unless L = I, which is the case if
and only if A = B.

4 Projections onto ∗-subalgebras and convexity inequalities

4.1 A simple example

The notion of operator convexity shall be useful to us when we encounter an operation on matrices
that involves averaging; i.e., forming convex combinations. One is likely to encounter such opera-
tions much more frequently than one might first expect. It turns out that many natural operations
on Mn can be written in the form

A 7→ C(A) :=
N∑
j=1

wjUjAU
∗
j (4.1)
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where the weights w1, . . . , wN are positive numbers wtih
∑N

j=1wj = 1, and the U1, . . . , UN are
unitaries in Mn. A basic example concerns orthogonal projections onto ∗-subalgebras, as we now
expalin.

A unital ∗-subalgebra of Mn is a subspace A that contains the identity I, is closed under matrix
multiplication and Hermitian conjugation: That is, if A,B ∈ A, then so are AB and A∗. In what
follows, all ∗-subalgebras that we consider shall be unital, and to simplify the notation, we shall
simply write ∗-subalgebra in place of unital ∗-subalgebra.

Perhaps the simplest example is

A =

{
A ∈M2 : A =

[
z w

w z

]
w, z ∈ C

}
.

Since [
x y

y x

][
ξ η

η ξ

]
=

[
xξ + yη xη + yξ

xη + yξ xξ + yη

]
, (4.2)

we see that A is in fact closed under multiplication, and quite obviously it is closed under Hermitian
conjugation. Moreover, one sees from (4.2) that[

x y

y x

][
ξ η

η ξ

]
=

[
ξ η

η ξ

][
x y

y x

]
;

that is, the algebra A is a commutative subalgebra of M2.
The main theme of this section is that: Orthogonal projections onto subalgebras can be expressed

in terms of averages over unitary conjugations, as in (4.1), and that this introduction of averages
opens the way to the application of convexity inequalities. By orthogonal, we mean of course
orthogonal with respect to the Hilbert-Schmidt inner product. This theme was first developed by
C. Davis [20]. Our treatment will be slightly different, and presented in a way that shall facilitate
the transition to infinite dimensions.

In our simple example, it is particularly easy to see how the projection of M2 onto A can be
expressed in terms of averages. Let

Q =

[
0 1
1 0

]
. (4.3)

Clearly Q = Q∗ and QQ∗ = Q2 = I, so that Q is both self-adjoint and unitary. Notice that for any

A =

[
a b

c d

]
∈M2,

1
2

(A+QAQ∗) =
1
2

[
a+ d b+ c

b+ c a+ d

]
∈ A .

Let us denote
1
2

(A+QAQ∗) by EA(A) for reasons that shall soon be explained.

One can easily check that EA(A) is the orthogonal projection of A onto A. Indeed, it suffices
to check by direct computation that EA(A) and A−EA(A) are orthogonal in the Hilbert-Schmidt
inner product.

The fact that
EA(A) =

1
2

(A+QAQ∗)
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is an average over unitary conjugations of A means that if f is any operator convex function, then

EA[f(A)] =
f(A) +Qf(A)Q∗

2
≥ f

(
A+QAQ∗

2

)
= f (EA[A]) .

In the same way, consider trace function if A,B 7→ H(A|B) = Tr[A logA] − Tr[A log(B)]. In
Theorem 6.3, this function has been proved to be jointly convex on H+

n ×H+
n . It is also clearly

unitarily invariant; i.e., for any n× n unitary matrix U ,

H(UAU∗|UBU∗) = H(A|B) .

It follows that, for n = 2, and A being the subalgebra of M2 defined above,

H(A|B) =
H(A|B) +H(QAQ∗|QBQ∗)

2

≥ H

(
A+QAQ∗

2

∣∣∣∣ B +QBQ∗

2

)
= H(EA(A)|EA(B)) .

It turns out that there is nothing very special about the simple example we have been discussing:
if A is any ∗-subalgebra of Mn, the orthogonal projection onto A can be expressed in terms of
averages of unitary conjugations, and from this fact we shall be able to conclude a number of very
useful convexity inequalities.

The notation EA for the orthogonal projection onto a ∗-subalgebra reflects a close analogy with
the operation of taking conditional expectations in probability theory: Let (Ω,F , µ) be a probability
space, and suppose that S is a sub-σ-algebra of F . Then L2(Ω,S, µ) will be a closed subspace of
L2(Ω,F , µ), and if X is any bounded random variable on (Ω,F , µ); i.e., any function on Ω that is
measurable with respect to F , and essentially bounded with respect to µ, the conditional expectation
of X given S is the orthogonal projection of X, which belongs to L2(Ω,S, µ), onto L2(Ω,F , µ).
The bounded measurable functions on (Ω,F , µ) of course form an commutative ∗-algebra (in which
the ∗ operation is pointwise complex conjugation), of which the bounded measurable functions
on (Ω,S, µ) form a commutative ∗-subalgebra. The non-commutative analog of the conditional
expectation that we now develop is more than an analog; it part of a far reaching non-commutative
extension of probability theory, and integration in general, due to Irving Segal [46, 48].

4.2 The von Neumann Double Commutant Theorem

4.1 DEFINITION (Commutant). Let A be any subset of Mn. Then A′, the commutant of A, is
given by

A′ = { B ∈Mn : BA = AB for all A ∈ A } .

It is easy to see that for any set A, A′ is a subalgebra of Mn, and if A is closed under Hermitian
conjugation, then A′ is a ∗-subalgebra of Mn.

In particular, if A is a ∗-subalgebra of Mn, then so is A′, the commutant of A. Continuing in
this way, the double commutant A′′ is also a ∗-subalgebra of Mn, but it is nothing new:

4.2 THEOREM (von Neumann Double Commutant Theorem). For any ∗-subalgebra A of Mn,

A′′ = A . (4.4)
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Proof: We first show that for any ∗-subalgebra A, and any B ∈ A′′ and any v ∈ Cn, there exists
an A ∈ A such that

Av = Bv . (4.5)

Suppose that this has been established. We then apply it to the ∗-subalgebra M of Mn2

consisting of diagonal block matrices of the form
A 0 . . . 0
0 A . . . 0

0
. . . 0

0 0 . . . A

 = A⊗ In×n , A ∈ A .

It is then easy to see that M′′ consists of diagonal block matrices of the form
B 0 . . . 0
0 B . . . 0

0
. . . 0

0 0 . . . B

 = B ⊗ In×n , B ∈ A′′ .

Now let {v1, . . . , vn} be any basis of Cn, and form the vector v =

 v1

...
vn

 ∈ Cn2
. Then

(A⊗ In×n)v = (B ⊗ In×n)v ⇒ Avj = Bvj j = 1, . . . , n .

Since {v1, . . . , vn} is a basis of Cn, this means B = A ∈ A. since B was an arbitrary element of A′′,
this shows that

A′′ ⊂ A .

Since A ⊂ A′′ is an automatic consequence of the definitions, this shall prove that A = A′′.
Therefore, it remains to prove (4.5). Fix any v ∈ Cn, and let V be the subspace of Cn given by

V = { Av : A ∈ A } . (4.6)

Let P be the orthogonal projection onto V in Cn. Since, by construction, V is invariant under the
action of A, PAP = AP for all A ∈ A. Taking Hermitian conjugates, PA∗P = PA∗ for all A ∈ A.
Since A is a ∗-algebra, this imples PA = AP for all A ∈ A. That is, P ∈ A′.

Thus, for any B ∈ A′′, BP = PB, and so V is invariant under the action of A′′. In particular,
Bv ∈ V , and hence, by the definition of V , Bv = Av for some A ∈ A.

4.3 REMARK. von Neumann proved his double commutant theorem [57] for operators on an
infinite dimensional Hilbert space, but all of the essential aspects are present in the proof of the
finite dimensional specialization presented here. The relevant difference between finite and infinite
dimensions is, of course, that in finite dimensional all subspaces are closed, while this is not the
case in infinite dimensions.

Thus in the infinite dimensional case, we would have to replace (4.7) by

V = { Av : A ∈ A } , (4.7)
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taking the closure of { Av : A ∈ A }. The same proof would then lead to the conclusion that for
all B ∈ A′′, Bv lies in the closure of { Av : A ∈ A }. Thus one concludes that A′′ = A if and
only if A is closed in the weak operator topology, which is the usual formulation in the infininte
dimensional context.

4.4 EXAMPLE. The ∗-subalgebra A of M2 from subsection 4.1 is spanned by I2×2 and Q, where
Q is given by (4.3). This ∗-sualgebra happens to be commutative, and so it is certainly the case
that A ⊂ A′ – a feature that is special to the commutative case. In fact, one can easily check that
AQ = QA if and only if A ∈ A, and so A = A′. It is then obviously the case that A = A′′, as von
Neumann’s theorem tells us.

4.5 LEMMA. Let A be a ∗-subalgebra of Mn. For any self-adjoint A ∈ A let A =
∑m

j=1 λjPj be
the spectral decomposition of A. Then each of the spectral projections Pj, j = 1, . . . ,m belongs to
A. Moreover, each A ∈ A can be written as a linear combination of at most 4 unitary matrices,
each of which belongs to A.

Proof: It is easy to see that

Pj =
∏

i∈{1,...,n}\{j}

1
λi − λj

(λi −A) . (4.8)

As a polynomial in A, this belongs to A.
If furthermore A is a self adjoint contraction, then each λj lies in [−1, 1], and hence λj = cos(θj)

for some θ ∈ [0, π]. In this case we may write

A =
m∑
j=1

λjPj =
1
2

 m∑
j=1

eiθjPj +
m∑
j=1

e−iθjPj

 .

Note that U =
∑m

j=1 e
iθjPj is unitary, and since it is a linear combination of elements of A, U ∈ A.

Thus we have seen that every self-adjoint contraction in A is of the form

A =
1
2

(U + U∗) U ∈ A .

Now for general A ∈ A, write

A =
1
2

(A+A∗) +
1
2i
i(A−A∗) .

which expresses A as a linear combination of self-adjoint elements of A. From here, the rest easily
follows.

4.6 LEMMA. Let A be a ∗-subalgebra of Mn. Then for any A ∈Mn

A ∈ A ⇐⇒ A = UAU∗ for all U ∈ A′ . (4.9)

Proof: Since for unitary U , A = UAU∗ if and only if UA = AU , the condition that A = UAU∗ for
all U ∈ A′ amounts to the condition that A commutes with every unitary matrix in A′. But by the
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previous lemma, commuting with every unitary matrix in A′ is the same thing as commuting with
every matrix in A′. Thus

A = UAU∗ for all A ∈ A′ ⇐⇒ A ∈ A′′ .

Then by the von Neumann Double Commutant Thoerem, (4.9) follows.
The fact that all ∗-subalgebra of Mn contain “plenty of projections, and plenty of unitaries”,

as expressed by Lemma 4.5, is often useful. As we shall see, there is another important sense in
which ∗-subalgebra of Mn are rich in unitaries. We first recall the polar factorization of a matrix
A ∈Mn.

4.7 LEMMA. For any matrix A ∈ Mn, let |A| = (A∗A)1/2. Then there is a unique partial
isometry U ∈ Mn such that A = U |A|, U is an isometry from the range of A∗ onto the range of
A, and U is zero on the nullspace of A. If A is invertible, U is unitary, and in any case, for all
v ∈ Cn,

Uv = lim
ε→0

A(A∗A+ εI)−1/2v .

We leave the easy proof to the reader. Now let pn(t) be a sequence of polynomials such that
limn→∞ pn(t) =

√
t, uniformly on on an interval containing the spectrum of A. Then

|A| = lim
n→∞

pn(A∗A) .

Now, if A is any ∗-subalgebra of Mn, and A and matrix in A, then for each n, pn(A∗A) ∈ A,
and hence |A| ∈ A. The same argument shows that for each ε > 0, (A∗A + εI)1/2 ∈ A. We now
claim that (A∗A+ εI)1/2 ∈ A as well. Indeed:

4.8 LEMMA. Let A be any ∗-subalgebra of Mn, and let B ∈ H+
n belong to A. Then the inverse

of B also belongs to A.

Proof: The spectrum of ‖B‖−1B lies in the interval (0, 1], and hence ‖I − ‖B‖−1B‖ < 1. Thus,

(‖B‖B)−1 = [I − (I − ‖B‖B)]−1 =
∞∑
n=0

(I − ‖B‖B)n ,

and by the above, each term in the convergent power series on the right belongs to A. Thus
(‖B‖B)−1 belongs to A, and hence so does B−1.

Thus for each ε > 0,
A ∈ A ⇒ A(A∗A+ εI)−1/2 ∈ A .

Taking limits, we see that if A = U |A| is the polar factorization of A, then both U and |A| belong
to A. We can now improve Lemma 4.8:

4.9 THEOREM. Let A be any ∗-subalgebra of Mn. Then for all A ∈ A such that A is invertible
in Mn, A is invertible in A; i.e., the inverse of A belongs to A.

Proof: Let A be invertible in Mn, and let A = U |A| be the polar factorization of A. Then
A−1 = |A|−1U∗. Since U ∈ A, which is a ∗-subalgebra, U∗ ∈ A as well. Since A is invertible, so is
|A|, and we have seen that |A| ∈ A. Then by Lemma 4.8, |A|−1 ∈ A. Altogether, we have that

A−1 = |A|−1U∗ ∈ A .
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4.3 Properties of the conditional expectation

4.10 DEFINITION. For any ∗-subalgebra A of Mn, let EA be the orthogonal projection, with
respect to the Hilbert-Schmidt inner product of Mn onto A (which is a closed subspace of Mn.)
We refer to EA as the conditional expectation given A.

4.11 EXAMPLE. Let {u1, . . . , un} be any orthonormal basis of Cn. Let A be the subalgebra of
Mn consisting of matrices that are diagonal in this basis; i.e., A ∈ A if and only if A =

∑n
j=1 ajuju

∗
j

for some a1, . . . , an ∈ C.
Then, for any B ∈Mn, the matrix B̃ :=

∑n
j=1〈uj , Buj〉uju∗j ∈ A, and moreover, for any A ∈ A,

Tr[A(B − B̃)] =
n∑
j=1

〈uj , A(B − B̃)uj〉 = 0 ,

and so B̃ is the orthogonal projection of B onto A. Thus, we have the formula

EA(B) =
n∑
j=1

〈uj , Buj〉|uj〉〈uj | (4.10)

for all B ∈Mn, where in the usual physical notation, 〉〈uj | denotes the orthogonal projection onto
the span of uj .

The next result is based on the projection lemma, which is very useful also in finite dimensions!
For the sake of completeness, we give the simple proof:

4.12 THEOREM (Projection Lemma). Let K be a closed convex set in a Hilbert space. Then K

contains a unique element of minimal norm. That is, there exists v ∈ K such that ‖v‖ < ‖w‖ for
all w ∈ K, w 6= v.

Proof: Let D := inf{‖w‖ : w ∈ K }. If D = 0, then 0 ∈ K since K is closed, and this is the
unique element of minimal norm. Hence we may suppose that D > 0. Let {wn}n∈N be a sequence
in K such that limn→∞ ‖wn‖ = D. By the parallelogram identity∥∥∥∥wm + wn

2

∥∥∥∥2

+
∥∥∥∥wm − wn2

∥∥∥∥2

=
‖wm‖2 + ‖wn‖2

2
.

By the convexity of K, and the definition of D,
∥∥∥∥wm + wn

2

∥∥∥∥2

≥ D2 and so

∥∥∥∥wm − wn2

∥∥∥∥2

=

(
‖wm‖2 −D2

)
+
(
‖wn‖2 −D2

)
2

.

By construction, the right side tends to zero, and so {wn}n∈N is a Cauchy sequence. Then, by the
completeness that is a defining property of Hilbert spaces, {wn}n∈N is a convergent sequence. Let v
denote the limit. By the continuity of the norm, ‖v‖ = limn→∞ ‖wn‖ = D. Finally, if u is any other
vector in K with ‖u‖ = D, (u + v)/2 ∈ K, so that ‖(u + v)/2‖ ≥ D. Then by the parallelogram
identity once more ‖(u+ v)/2‖ = 0, and so u = v. This proves the uniqueness.
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4.13 THEOREM. For any A ∈ Mn, and any ∗-subalgebra A of Mn, let KA denote the closed
convex hull of the operators UAU∗, U ∈ A′. Then EA is the unique element of minimal (Hilbert-
Schmidt) norm in KA. Furthermore,

Tr[EA(A)] = Tr[A] , (4.11)

A > 0 ⇒ EA(A) > 0 , (4.12)

and for each B ∈ A,

EA(BA) = BEA(A) and EA(AB) = EA(A)B . (4.13)

Proof: We apply the Projection Lemma in Mn equipped with the Hilbert-Schmidt inner product,
which makes Mn a Hilbert space. For each A ∈ A, let Ã denote the unique element of minimal
norm in KA, and let U ∈ A′ be unitary. Then by the parallelogram law,∥∥∥∥∥Ã+ UÃU∗

2

∥∥∥∥∥
2

+

∥∥∥∥∥Ã− UÃU∗2

∥∥∥∥∥
2

=
‖Ã‖2 + ‖UÃU∗‖2

2
= ‖Ã‖2 .

Since (Ã+ UÃU∗)/2 ∈ KA, ‖(Ã+ UÃU∗)/2‖ ≥ Ã‖, the minimal norm in KA, and hence∥∥∥∥∥Ã− UÃU∗2

∥∥∥∥∥
2

= 0 .

This means that Ã = UÃU∗ for all unitary U ∈ A′. By Lemma 4.6, this means that Ã ∈ A.
Next we claim that

〈B,A− Ã〉 = 0 for all B ∈ A , (4.14)

which, together with the fact that Ã ∈ A identifies Ã as the orthogonal projection of A onto A.
To prove (4.14) note that for B ∈ A and Uj ∈ A′, U(AB)U∗ = UAU∗B Hence if

∑
pj
Uj(AB)U∗j

is an convex combination of unitary conjugations of AB with each Uj ∈ A′,

∑
pj

Uj(AB)U∗j =

∑
pj

UjAU
∗
j

B .

It readily follows that
ÃB = ÃB . (4.15)

Now observe that since unitary conjugation preserves the trace, each element of KA has the
same trace, namely the trace of A. In particular, for all A ∈Mn,

Tr[Ã] = Tr[A] . (4.16)

Combining this with (4.15) yields

0 = Tr[ÃB] = Tr[AB] = Tr[ÃB] = Tr[AB] = Tr[(Ã−A)B] .

Since B is an arbitrary element of A, this proves (4.14). Thus, Ã is the orthogonal projection of A
onto A. Now that we know Ã = EA(A), (4.11) follows from (4.16), and the identity on the right in
(4.13) now follows from (4.15), and then the identity on the left follows by Hermitian conjugation.
Finally, if A > 0, so is each UAU∗, and hence so is each member of KA, including the element of
minimal norm, EA(A).
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4.14 REMARK. Theorem 4.13 says that for all A ∈Mn, all ∗-subalgebras A of Mn and all ε > 0,
there exists some set of N unitaries U1, . . . , UN ∈ A′ and some set of N weights, w1, . . . , wN , non-
negative and summing to one, such that

‖EA −
N∑
j=1

wjUjAU
∗
j ‖ ≤ ε . (4.17)

In fact, in finite dimensional settings, one can often avoid the limiting procedure and simply write

EA =
N∑
j=1

wjUjAU
∗
j , (4.18)

as an exact equality. An important instance is provided in the next example. However, while the
statement of Theorem 4.13 is couched in finite dimensional terms, this is only for simplicity of
exposition: The proof makes no reference to the finite dimension of Mn, and the approximation of
conditional expectations provided by (4.17) is valid – and useful – in infinite dimensions as well.
This is the advantage of the argument based on the projection lemma.

4.15 EXAMPLE. As in Example 4.11, let {u1, . . . , un} be any orthonormal basis of Cn, and let
A be the subalgebra of Mn consisting of matrices that are diagonal in this basis. There we derived
an explicit formula (4.10) for EA. Theorem 4.13 says that there exists an alternate expression of
EA as a limit of averages of unitary conjugations. In fact, it can be expressed as an average over n
unitary conjugations, and no limit is needed in this case.

To see this, for k = 1, . . . , n define the unitary matrix Uk by

Uk =
n∑
`=1

ei2πjk/n|u`〉〈u`| . (4.19)

Then, for any B ∈Mn, UkBU∗k =
n∑

`,m=1

〈umBu`〉ei2π(`−m)k/n|um〉〈u`|. Therefore, averaging over k,

and then swapping orders of summation,

1
n

n∑
k=1

UkBU
∗
k =

n∑
`,m=1

〈umBu`〉

(
1
n

n∑
k=1

ei2π(`−m)k/n

)
|um〉〈u∗` | =

n∑
m=1

〈umBum〉|um〉〈um| = EA(B) .

In summary, with U1, . . . , Un defined by (4.19), and A being the ∗-subalgebra of Mn consisting
of matrices that are diagonalizaed by {u1, . . . , un},

EA(B) =
1
N

N∑
k=1

UkBU
∗
k . (4.20)

In other words, the “diagonal part” of B is an average over n unitary conjugations of B.

Theorem 4.13 is the source of many convexity inequalities for trace functions. Here is one of
the most important:

4.16 THEOREM. Let f be any operator convex function. Then for an ∗-subalgebra A of Mn,

f(EA(A)) ≤ EA(f(A)) .
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Proof: Since f(EA(A)) − EA(f(A)) is a self-adjoint operator in A, all of its spectral projections
are in A, and thus, it suffices to show that for every orthogonal projection P in A,

Tr [Pf(EA(A))] ≤ Tr [PEA(f(A))] . (4.21)

But, since P ∈ A,
Tr [PEA(f(A))] = Tr [Pf(A)] . (4.22)

Next, by Theorem 4.13, for any A ∈Mn, EA(A) is a limit of averages of unitary conjugates of
A. That is EA(A) = limk→∞ Ck(A), where each Ck(A) has the form

Ck(A) =
Nk∑
j=1

pk,jUn,jAU
∗
k,j (4.23)

and where for each k, j Uk,j is a unitary in A,, pk,j > 0, and
∑Nk

j=1 pk,j = 1. Then, by the operator
convexity of f ,

f(Ck(A)) ≤

 Nk∑
j=1

pk,jUk,jf(A)U∗k,j

 ,

and then since P ∈ A and Uk,j ∈ A′ for each k, j,

Tr[Pf(Ck(A))] ≤
Nk∑
j=1

pk,jTr
[
f
(
Uk,jPf(A)U∗k,j

)]
=

Nk∑
j=1

pk,jTr [Pf (A)] = Tr[Pf(A)] .

Therefore,
Tr [Pf(EA(A))] = lim

k→∞
Tr[Pf(Ck(A))] ≤ Tr[Pf(A)] .

Combining this with (4.22) proves (4.21).
Let us apply this to the von Neumann entropy. First of all, note that since EA is the orthogonal

projection onto A, it is continuous. Thus, EA not only preserves the class of positive definite
operators, as asserted in (4.12), it also preserves the class of positive semidefinite operators:

A ≥ 0 ⇒ EA(A) ≥ 0 . (4.24)

This, together with (4.11) implies that if ρ ∈Mn is a density matrix, then so is EA(ρ).
Now we may apply Theorem 4.16 to see that for any ∗-subalgebra of Mn, and any ρ ∈ Sn, the

von Neumann entropy of EA(ρ), S(EA(ρ)), is no less than the von Neuman entropy of ρ, S(ρ):

S(EA(ρ)) ≥ S(ρ) .

In the next section, we shall apply the same reasoning to the relative entropy, which by Theo-
rem 6.3 is a jointly convex functions of its two arguments. However, to do this, we need to know
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that for any A,B in Mn, there is a single sequence {Cn}n∈N of operators of the form (4.23) such
that both

EA(A) = lim
n→∞

Cn(A) and EA(B) = lim
n→∞

Cn(B) .

There is a very simple way to see that this is possible: Consider the ∗-subalgebra M2(A) of
M2n consisting of block matrices of the form[

A B

C D

]
, A,B,C,D ∈ A .

Then the same computations which show that the only matrices in M2 that commute with all
other matrices in M2 are multiples of the identity show that (M2(A))′ consists of matrices of the
form [

X 0
0 X

]
, X ∈ A′ ,

and hence the unitaries in (M2(A))′ have the form[
U 0
0 U

]
, U ∈ A′ , UU∗ = I ,

One readily computes that for any A,B,C,D ∈Mn (Mn now, not only A), and any U ∈ A′,[
U 0
0 U

][
A B

C D

][
U 0
0 U

]∗
=

[
UAU∗ UBU∗

UCU∗ UDU∗

]
.

and moreover, ∥∥∥∥∥
[
A B

C D

]∥∥∥∥∥
2

HS

= ‖A‖2HS + ‖B‖2HS + ‖C‖2HS + ‖D‖2HS .

From this and Theorem 4.13, one readily concludes that

EM2(A)

([
A B

C D

])
=

[
EA(A) EA(B)
EA(C) EA(D)

]
,

and that there exists a sequence {Cn}n∈N of operators of the form (4.23) such that[
EA(A) EA(B)
EA(C) EA(D)

]
= lim

n→∞

[
Cn(A) Cn(B)
Cn(C) Cn(D)

]
.

The same argument clearly applies to the larger block-matrix algebras Mn(A), and we draw
the following conclusion:

4.17 LEMMA. For any m matrices A1, . . . , Am ∈Mn, and an ∗-subalgebra A of Mn, there exists
a sequence {Cn}n∈N of operators of the form (4.23) such that ,

EA(Aj) = lim
n→∞

Cn(Aj) for each j = 1, . . . ,m .

The block matrix construction that has let to the proof of Lemma 4.17 provides a powerful
perspective on a great many problems, and it will turn out to be important for far more than the
proof of this lemma. In the meantime however, let us turn to some concrete examples of conditional
expectations.
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4.4 Pinching, conditional expectations, and the Operator Jensen inequality

4.18 EXAMPLE (Pinching). Let A ∈ Hn have the spectral representation A =
∑k

j=1 λkP , with∑k
j=1 Pj = I. (That is, we include the zero eigenvalue in the sum if zero is an eigenvalue.) Let AA

denote the commutant of A, which, as we have observed is a ∗-subalgebra 0f Mn. For simplicity of
notation, let EA denote the conditional expectation given AA; i.e.,

EA := EAA
.

We now claim that for any B ∈Mn,

EA(B) =
k∑
j=1

PjBPj . (4.25)

To prove this, note that PjA = APj = λjA, so that k∑
j=1

PjBPj

A =
k∑
j=1

λjPjBPj = A

 k∑
j=1

PjBPj

 ,

and thus the right hand side of (4.25) belongs to AA.
Next, ss we have seen in (4.8), each of the spectral projections Pj can be written as a polynomial

in A, and hence belongs to the commutant algebra AA, and also, for all C ∈ AA, and each j =
1 dots, k, CPj = PjC.

Therefore, for such C,  k∑
j=1

PjBPj

C =
k∑
j=1

PjBCPj ,

so that

Tr

B −
 k∑
j=1

PjBPj

C

 = Tr

BC −
 k∑
j=1

PjBCPj

 = 0

since
∑k

j=1 Pj = I This shows that the right hand side of (4.25) is in fact the orthogonal projection
of B onto AA, and proves (4.25).

Davis [20] refers to the operation B 7→
∑k

j=1 PjBPj for a set of orthogonal projections P1, . . . , Pk

satisfying
∑k

j=1 Pj = I as a pinching operation. The calculation we have just made shows that
pinching is a conditional expectation: Indeed, given the orthogonal projections P1, . . . , Pk satisfying∑k

j=1 Pj = I, define the self-adjoint operator A by A =
∑k

j=1 jPj = I. With this definition of A,
(4.25) is true using A on the left and P1, . . . , Pk on the right.

It now follows from Theorem 4.16 that for any operator convex function f , and any set of
orthogonal projections P1, . . . , Pk satisfying

∑k
j=1 Pj = I,

f

 k∑
j=1

PjBPj

 ≤ f(B) (4.26)

for all B in Mn.
The fact that “pinching” is actually a conditional expectation has several useful consequences,

with which we close this section.
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4.19 THEOREM (Sherman-Davis Inequality). For all operator convex functions f , and all or-
thogonal projectios P ∈Mn,

Pf(PAP )P ≤ Pf(A)P (4.27)

for all A ∈Mn.

Proof: We take P = P1 and let P − 2 = I − P1. Then using (4.26) for P1 + P2 = I and

P1f

 2∑
j=1

PjBPj

P1 = P1f(P1BP1)P,

we obtain (4.27).

Theorem 4.19 is due to Davis and Sherman [19, 20]. Note that if f(0) = 0, (4.27) may be
shortened to

f(PAP ) ≤ Pf(A)P ,

but one case that comes up frequently in applications is f(s) = s−1 where (4.27) must be used as
is.

The next inequality is a variant of Theorem 4.19 due to Davis [20].

4.20 THEOREM (The Operator Jensen Inequality). Let V1, . . . , Vk ∈Mn satisfy

k∑
j=1

V ∗j Vj = I (4.28)

Then for any operator convex function f , and any B1, . . . , Bk ∈ H+
n ,

f

 k∑
j=1

V ∗j BjVj

 ≤ k∑
j=1

V ∗j f(Bj)Vj . (4.29)

Proof: Let U be an kn×kn unitary matrix which, when viewed as a k×k block matrix with n×n
blocks Ui,j has

Ui,n − Vi i = 1, . . . , n . (4.30)

Since (4.28) is satisifed, there are many ways to construct such a matrix U : (4.30) specifies the
final n columns, which are unit vectors in Ckn by (4.28), and then the remaining columns can be
filled in by extending these n unit vecotrs to an orthonormal basis of Ckn.

Next, let B by the kn × kn, again viewed as an k × k block matrix, which has Bj for its jth
diagonal block, and zero for all off-diagonal blocks. Finally, let P by the kn × kn orthogonal
projection with In×n in the upper left block, and zeros elsewhere.

Note that f(B) has f(B) in each diagonal block, and zeros elsewhere. A simple calculation now
shows that U∗BU has

∑k
j=1 V

∗
j BjVj , and

f (U∗BU) = U∗f(B)U

has
∑k

j=1 V
∗
j f(Bj)Vj as its upper left n× n block.

By (4.27),
Pf (PU∗BUP)P ≤ Pf (U∗BU)P ,

which, by the calculation we have just made, and by the definition of P, is equivalent to (4.29).
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4.21 REMARK. It is clear, upon taking each Vj to be a positive multiple of the identity, that the
operator convexity of f is not only a sufficient condition for (4.29) to hold whenever V1, . . . , Vk ∈Mn

satisfy (4.28); it is also necessary. It is remarkable that the class of functions f with the operator
convexity property of Theorem 4.20, in which the convex combination is taken using operator values
weights, is not a proper subclass of the class of operator convex functions we have already defined
using scalar values weights.

5 Tensor products

5.1 Basic definitions and elementary properties of tensor products

If V and W are two finite dimensional vector spaces, their tensor product is the space of all bilinear
forms on V ∗ ×W ∗, where V ∗ and W ∗ are the dual spaces of V and W respectively. That is, V ∗

consists of the linear functionals f on V , with the usual vector space structure ascribed to spaces
of functions, and similarly for W .

Of course, in any inner product space, we have an identification of V ∗ with V provided by the
inner product. However, certain formulas for the tensor product that we shall make much use of
will be most clear if we introduce the tensor product in its purest form as a vector space construct,
without reference to any inner product.

The next few paragraphs recall some elementary facts about dual spaces and matrix represen-
tations. Many readers may prefer to skip ahead to the formal definition of the tensor product, but
we include the material to ensure that our notation is absolutely unambiguous.

If {v1, . . . , vm} is any basis of V , let {f1, . . . , fm} denote the corresponding dual basis of V ∗.
That is, For any v ∈ V , write

v =
m∑
j=1

ajvj , a1, . . . , am ∈ C .

Since the coefficients a1, . . . , aj are uniquely determined by v, the map

fj : v 7→ aj

is well defined and is clearly a linear transformation from V to C; i.e., an element of V ∗. It is easy
to see that {f1, . . . , fm} spans V ∗, and also that

fi(vj) = δi,j , 1 ≤ i, j ≤ m

from which linear independence easily follows. Thus, {f1, . . . , fm} is a basis of V ∗, and is, by
definition, the basis dual to {v1, . . . , vm}.

The coordinate maps
v 7→ (f1(v), . . . , fm(v)) ∈ Cm

and
f 7→ (f(v1), . . . , f(vm)) ∈ Cm

are the isomorphisms of V and V ∗ respectively with Cm that are induced by the dual bases
{v1, . . . , vm} and {f1, . . . , fm}, and ultimately by the basis {v1, . . . , vm}, since this determines its
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dual basis. In particular, for any v ∈ V and any f ∈ V ∗,

v =
m∑
j=1

fj(v)vj and f =
m∑
j=1

f(vj)fj . (5.1)

The dual basis is useful for many purposes. One is writing down matrix representations of linear
transformations. If T : V → V is any linear transformation of V , let [T ] ∈Mm be defined by

[T ]i,j = fi(T (vj)) ,

For any fixed basis, the matrix [T ] gives the action of T on coordinate vectors for that basis: If
a vector v ∈ V has jth coordinate aj ; i.e., aj = fj(v), j = 1, . . . ,m, then Tv has ith coordinate∑m

j=1[T ]i,jaj .

5.1 DEFINITION (Tensor product of two finite dimensional vector spaces). For two finite di-
mensional vector spaces V and W , their tensor product space V ⊗W is the vector space consisting
of all bilinear forms K on V ∗ ×W ∗, equipped with the usual vector space structure ascribed to
spaces of functions.

Given v ∈ V and w ∈W , v ⊗ w denote the bilinear from on V ∗ ×W ∗ given by

v ⊗ w(f, g) = f(v)g(w) for all f ∈ V ∗ , g ∈W ∗ . (5.2)

If {v1, . . . , vm} and {w1, . . . , wn} are bases of V and W respectively, let {f1, . . . , fm} and
{g1, . . . , gn} denote the corresponding dual bases. By (5.1) and the definition of vi ⊗ wj , for any
bilinear form K on V ∗ ×W ∗,

K(f, g) =
∑
i,j

K(f(vi)fi, g(wj)gj)fi(v)gj(w) =

∑
i,j

K(fi, gj)f(vi)g(wj) =
∑
i,j

K(fi, gj)[vi ⊗ wj ](f, g) .

That is,
K =

∑
i,j

K(fi, gj)[vi ⊗ wj ] . (5.3)

Thus,
{vi ⊗ wj : 1 ≤ i ≤ m , 1 ≤ j ≤ n } (5.4)

spans V ⊗W . It is also linearly independent, and is therefore a basis of V ⊗W .
To see this linear independence, suppose that for some numbers bi,j , 1 ≤ i ≤ m , 1 ≤ j ≤ n,∑
i,j bi,jvi ⊗ wj = 0; i.e.,

∑
i,j bi,jvi ⊗ wj is the bilinear from map on V ×W sending everything to

zero. But then applying
∑

i,j bi,jvi ⊗ wj to (fk, g`) we see

0 =

∑
i,j

bi,jvi ⊗ wj

 (fk, g`) =
∑
i,j

bi,jfk(vi)g`(wj) = bk,` ,

which shows the linear independence. We are now in a position to define a key isomorphism:
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5.2 DEFINITION (Matrix isomorphism). Given any two bases {v1, . . . , vm} and {w1, . . . , wn} of
V and W respectively, and hence the corresponding dual bases {f1, . . . , fm} and {g1, . . . , gn} of V ∗

and W ∗ respectively, the matrix isomorphism is the identification of V ⊗W with the space Mm×n
of m× n matrices given by

V ⊗W 3 K 7→ [K] ∈Mm×n (5.5)

where
[K]i,j = K(fi, gj) . (5.6)

The fact that (5.5) is an isomorphism follows directly from (5.3) and the fact that (5.4) is a
basis of V ⊗W . Of course, this isomorphism depends on the choice of bases, but that shall not
diminish its utility.

5.3 EXAMPLE. For any v ∈ V and w ∈ W , what is the matrix corresponding to v ⊗ w? (Of
course we assume that bases {v1, . . . , vm} and {w1, . . . , wn} of V and W , and their corresponding
dual bases are specified.) Since v ⊗ w(fi, gj) = fi(v)gj(w), we have

[v ⊗ w]i,j = [v ⊗ w](fi, gj) = fi(v)gj(w) = [v]i[w]j (5.7)

where [v]i := fi(v) is the ith coordinate of v, while [w]j := gj(w) is the jth coordinate of w. In
other words, the matrix corresponding to v ⊗ w, for this choice of bases, is the rank one matrix
with entries [v]i[w]j .

It is clear that every rank one matrix matrix arises this way, and thus the matrix isomorphism
identifies the set of product vectors in V ⊗W with the set of rank one matrices in Mm×n. Since we
know how to compute the rank of matrices by row reduction, this gives us a means to determine
whether or not any given element of V ⊗W is a product vector on not.

5.4 DEFINITION (Entanglement). The Schmidt rank of a vector K in V ⊗W is the rank of the
corresponding matrix [K] ∈Mm×n. (Note that this rank is independent of the choice of bases used
to determine [K].) If the Schmidt rank of K is greater than one, then K is an entagled vector, and
otherwise, if the Schmidt rank of K equals one, K is a product vector, in whihc case one may say K
is unentangled. As noted above, the matrix isomorphism provides an effective means to determine
whether a given K ∈ V ⊗W is entangled or not.

Now let T : V → V and S : W → W be linear transformations. This pair, (T, S), induces a
linear transformation T ⊗ S : V ⊗W → V ⊗W by

[T ⊗ S(K)](f, g) = K(f ◦ S, g ◦ T ) ,

where of course f ◦ T ∈ V ∗ is given by f ◦ T (v) = f(T (v)), and similarly for g ◦ S. By (5.1),

fi ◦ T =
m∑
k=1

((fi ◦ T )(vk)fk =
m∑
k=1

fi(T (vk))fk =
m∑
k=1

[T ]i,kfk ,

and likewise

gj ◦ S =
n∑
`=1

[S]j,`g` .
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Therefore,
(T ⊗ S)K(fi, gj) =

∑
k,`

[T ]i,k[S]j,`K(fk, g`) , (5.8)

which means that
[(T ⊗ S)K]i,j =

∑
k,`

[T ]i,k[S]j,`[K]k,` . (5.9)

In other words, under the isometry K 7→ [K] of V ⊗W with the space of m×n matrices, the action
of T ⊗S on V ⊗W has a very simple matrix expression: The matrix [T ] of T acts on the left index
of [K], and the matrix [S] of S acts on the right index of K.

5.2 Tensor products and inner products

Now suppose that V and W are inner product spaces; i.e., finite dimensional Hilbert spaces. We
denote the inner product on either space by 〈·, ·〉. At this stage we may as well identify V with Cm

and W with Cn, so let us suppose that V = Cm and W = Cn, both equipped with their standard
Euclidean inner products.

Now let {v1, . . . , vm} and {w1, . . . , wn} be orthonormal bases for V and W respectively. We can
now express the dual basis elements in terms of the inner product: For any v ∈ V and w ∈ W ,
fi(v) = 〈vi, v〉, i = 1, . . . ,m and gj(w) = 〈wj , v〉, j = 1, . . . , n. In particular, from (5.7) we have
that

[v ⊗ w]i,j = 〈vi, v〉〈wj , v〉 1 ≤ i ≤ m , 1 ≤ j ≤ n . (5.10)

As above, for K ∈ V ⊗W , let [K] denote the m × n matrix corresponding to K under the
matrix isomorphism that is induced by our choice of orthonormal bases. Now use the Hilbert-
Schmidt inner product on the space of m × n matrices to induce an inner product on V ⊗ W .
Define, for B,C ∈ V ⊗W ,

〈B,C〉 = Tr ([B]∗[C]) =
∑
i,j

[B]i,j [C]j,i . (5.11)

Combining (5.10) and (5.11), we see that for any v, v′ ∈ V and any w,w′ ∈W ,

〈v ⊗ w, v′ ⊗ w′〉 =
∑
i,j

〈vi, v〉〈wi, w〉〈vi, v′〉〈wi, v′〉

=

(
m∑
i=1

〈v, vi〉〈vi, v′〉

)(
m∑
i=1

〈w,wj〉〈wj , w′〉

)
= 〈v, v′〉〈w,w′〉 . (5.12)

Notice that the right hand side does not depend on our choices of orthonormal bases. Thus, while
our inner product on V ⊗W defined by (5.11)might at first sight seem to depend on the choice of
the orthonormal bases used to identify V ⊗W with the space of m× n matrices, we see that this
is not the case.

There is one more important conclusion to be drawn from (5.12): For any orthonormal bases
{v1, . . . , vm} and {w1, . . . , wn} of V and W respectively,

{vi ⊗ wj : 1 ≤ i ≤ m , 1 ≤ j ≤ n }
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is an orthonormal basis of V ⊗W .
When V and W are inner product spaces, we can quantify the degree of entanglement of vectors

in V ⊗W in a meaningful way, independent of the choice of bases. The Schmidt rank gives one
such quntification, but as rank is not a continuous function on Mm×n, it is has limited use beyond
its fundamental role in defining entanglement.

Recall that any K ∈Mm×n has a singular value decomposition

K = UΣV ∗ (5.13)

where Σ is an r × r diagonal matrix with strictly positive entries σ1 ≥ · · · ≥ σr known as the
singular values of K, and where U and V are isometries from Cr into Cm and Cn respectively.
That is U = [u1, . . . , ur] where each uj is a unit vector in Cm, and V = [v1, . . . , vr] where each vj
is a unit vector in Cn. Otherwise put

U∗U = V ∗V = Ir×r . (5.14)

Evidently r is the rank of K.
While the matrices U and V are “essentially uniquely” determined by K, what is important to

us here is that the matrix Σ is absolutely uniquely determined by K: It makes sense to speak of
the singular values of K.

By the definition of the inner product on V ⊗W , if K is any unit vector in V ⊗W , then

Tr[K∗K] = Tr[KK∗] = 1 , (5.15)

and so both K∗K and KK∗ are density matrices, on Cn and Cm respectively. Notice that by (5.14)

K∗K = V Σ2V ∗ and KK∗ = V Σ2V ∗

so the squares of the singular values of K are the non-zero eigenvalues of these two density matrices,
and in particular

∑r
j=1 σ

2
j = 1. Computing the von Neumann entropies of these two density

matrices, we find

S(K∗K) = S(KK∗) =
r∑
j=1

σ2
j log(σ2

j ) .

Thus, we come to the conclusion that K is a product state if and only if S(K∗K) = 0, and
otherwise, if S(K∗K) > 0, K is entangled. Since S(K∗K) depends continuously on K, this provides
us with a useful measure of the degree of entanglement.

5.3 Tensor products of matrices

In this subsection, we focus on the tensor product of Cm and Cn, each equipped with their usual
Euclidean inner products.

Given matrices A ∈Mm and B ∈Mn, identify these matrices with the linear transformations
that they induce on Cm and Cn respectively. Then A⊗B effects a linear transformation on Cm⊗Cn

through (5.9). It then follows from (5.7) and (5.9) that

(A⊗B)(v ⊗ w) = Av ⊗Bw , (5.16)
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and more generally, for any K ∈Mm×n regarded as a vector in Cm ⊗ Cn,

[(A⊗B)K]i,j =
∑
k,`

Ai,kBj,`Kk,` . (5.17)

Thus, for all A,C ∈Mm and B,D ∈Mn,

(A⊗B)(C ⊗D) = (AC)⊗ (BD) . (5.18)

In particular, if A and B are invertible, then so is A⊗B, and

(A⊗B)−1 = A−1 ⊗B−1 .

It follows from (5.12) that for all A ∈Mm,B ∈Mn, v1, v2 ∈ Cm and w1, w2 ∈ Cn that

〈v1 ⊗ w1, (A⊗B)v2 ⊗ w2〉 = 〈v1, Av2〉〈w1, Bw2〉
= 〈A∗v1, v2〉〈B∗w1, w2〉 = 〈(A∗ ⊗B∗)v1 ⊗ w1, v2 ⊗ w2〉 .

That is,
(A⊗B)∗ = A∗ ⊗B∗ . (5.19)

Consequently, suppose A ∈ H+
n and B ∈ H+

n . Then we can write A = C∗C and B = D∗D

for C ∈ Mm and D ∈ Mn. Then A ⊗ B = (C ⊗ D)∗(C ⊗ D) , so (A ⊗ B) is at least positive
semi-definite. Since A and B are both invertible, so is A⊗B, and hence (A⊗B) is positive definite.
That is, whenever A ∈ H+

n and B ∈ H+
n , then A⊗B is positive definite.

The equation (5.17) provides one useful way to represent the action of the operator A⊗B, but
there is another that is also often useful: a representation of the operator A⊗B in terms of block
matrices. If K = [v1, . . . , vn] is the m × n matrix whose jth column in vj ∈ Cm, let us “vertically
stack” K as a vector in Cmn:

Kvec =

 v1

...
vn

 . (5.20)

Then A⊗B is represented by the block matrix B1,1A · · · B1,nA
...

. . .
...

Bn,1A · · · Bn,nA

 . (5.21)

5.4 The partial trace

Let D be any operator on Cm⊗Cn, regarded as an mn dimensional inner product space, as described
above. Let Tr denote the trace on Cm ⊗ Cn, and then we have linear functional

A 7→ Tr[DA]

defined on A := L(Cm ⊗ Cn), the linear transformations from Cm ⊗ Cn into itself, which is an
algebra as well as a vector space.
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Let A1 and A2 be the subalgebras of A consisting of operators of the from B⊗In×n and Im×m⊗C
respectively. (In what follows, we shall usually simply write I in place of Im×m or In×n where the
meaning is clear.)

The maps
B 7→ Tr[D(B ⊗ I)] and C 7→ Tr[D(I ⊗ C)]

are then linear functionals on Mm and Mn respectively.
Since Mn is an inner product space with the inner product 〈X,Y 〉 = Tr[X∗Y ], for every linear

functional ϕ on Mn, there is a unique Xϕ inMn such that

ϕ(Y ) = 〈Xϕ, Y 〉 = Tr[XϕY ] for all Y ∈Mn .

This justifies the following defintion:

5.5 DEFINITION. For any operator D on Cm ⊗ Cn, Tr1[D] is the unique element of Mn such
that

Tr[D(I ⊗ C)] = 〈, (I ⊗ C∗)D〉 = 〈C∗,Tr1[D]〉 = Tr [Tr1[D]C] , (5.22)

where the trace on the left hand side of (5.22) is taken on Cm ⊗ Cn, and the trace on the right is
taken on Cn. We refer to Tr1[D] as the partial trace of D onto Mn. In the same way, we define
Tr2[D] so that

Tr[(Tr2D)B] = Tr[D(B ⊗ I)] (5.23)

for all B ∈Mm.

If we represent K ∈ Cm ⊗ Cn as a vector in Cmn as in (5.20) then D can be represented as a
block matrix with n2 blocks  D(1,1) · · · D(1,n)

...
. . .

...
D(n,1) · · · D(n,n)

 , (5.24)

where each D(i,j) ∈Mm. Then by (partr2), D(B ⊗ I) = D(1,1)B · · · D(1,n)B
...

. . .
...

D(n,1)B · · · D(n,n)B

 , (5.25)

and therefore

Tr[D(B ⊗ I)] =
n∑
j=1

Tr[D(j,j)B] ,

where the trace on the left is taken in Cm ⊗ Cn, and on the right in Cm. Thus we see

Tr2[D] =
n∑
j=1

D(j,j) .

That is, if D is written in block matrix form, then the partial trace is simply the sum of the diagonal
blocks.
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The partial trace has an important physical interpretation. In quantum mechanics, the density
matrices ρ on Cm ⊗ Cn represent the possible states of a system whose observables are operators
A on Cm⊗Cn. Then the value Tr[ρA] represents the expected value of of a measurement of of the
observable A, at least in the case that S is self-adjoint, in which case a well-defined measurement
procedure will exist. Let A denote the algebra of observables on the whole system, i.e., A denotes
the linear transformations from Cm ⊗ Cn into itself.

The tensor product structure of our (finite dimensional) Hilbert space Cm⊗Cn arises whenever
our quantum mechanical system is composed of two subsystems: The first may consist of some
degrees of freedom that we are trying to measure; i.e., that are coupled to some experimental
apparatus, and the second may be the “environment”, a heat bath of some sort, or just some other
degrees of freedom that are not directly coupled to our measurement apparatus.

In this circumstance, the subalgebra A1 of observables of the form B ⊗ I; i.e., obervables on
the first subsystem is of obvious interest. And clearly, it is of obvious interest to restrict the linear
functional

A 7→ Tr[ρA] ,

which gives expected values, to the subalgebra A1 of observables that our apparatus might measure.
This restriction is evidently given by

(B ⊗ I) 7→ Tr[ρ(B ⊗ I)] .

The partial trace allows us to express this restriction in terms of a density matrix on the
subsystem. By the definition of the partial trace,

Tr[ρ(B ⊗ I)] = Tr [Tr2[ρ]B] .

The fact that Tr2[ρ] is a density matrix on Cm whenever ρ is a density matrix on Cm ⊗ Cn is
clear from the fact that

B ≥ 0⇒ B ⊗ I ≥ 0→ Tr[ρ(B ⊗ I)] ≥ 0⇒ Tr [Tr2[ρ]B] ≥ 0 ,

so that Tr2[ρ] ≥ 0, and taking B = I, we see that Tr[Tr2[ρ]] = 1. In summary:

5.6 THEOREM (The partial traces preserves positivity and traces). For all operators D on
Cm ⊗ Cn, the map D 7→ Trj(D), j = 1, 2 satisfies

Tr[Trj(D)] = Tr[D] , (5.26)

and
D ≥ 0 ⇒ Trj(D) ≥ 0 . (5.27)

That is, D 7→ Trj(D), j = 1, 2, is trace preserving and positivity preserving.

We now make an observation that may already occurred to the reader: The partial trace is
nothing but a special case of the conditional expectation: Using the notation introduced above,
consider EA2 , the conditional expectation that is the orthogonal projection onto the ∗-subalgebra A2
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consisting of operators in A of the form I ⊗C, C ∈Mn. Then, by the definition of the conditional
expectation as an orthogonal projection, for any D ∈ A, and any C ∈Mn,

〈I ⊗ C∗, D〉 = 〈I ⊗ C∗,EA2(D)〉 . (5.28)

By definition, EA2(D) has the from I ⊗ D̃ for some D̃ ∈Mn. Thus, we can rewrite (5.28) as

TrCm⊗Cn [(I ⊗ C)D] = TrCm⊗Cn [(I ⊗ C)(I ⊗ D̃)] = mTrCn [CD̃] ,

where the subscripts indicate the different Hilbert spaces over which the traces are taken. Com-
paring this with (5.22), we see that D̃ = Tr1[D]. That is,

1
m
I ⊗ Tr1[D] = EA2(D) .

This result, combined with Theorem 4.13) allows us to express partial traces as averages over
unitary conjugations, and this will be useful in many applications of convexity. Therefore, we
record this result in a theorem:

5.7 THEOREM. Let A := L(Cm ⊗ Cn), the ∗-algebra of linear transformations from Cm ⊗ Cn

into itself Let A1 and A2 be the ∗-subalgebras of A consisting of operators of the from B⊗ In×n and
Im×m ⊗ C respectively, with B ∈Mm and C ∈Mn. Then, for any D ∈ A,

1
m
Im×m ⊗ Tr1[D] = EA2(D) and

1
n

Tr2[D]⊗ In×n = EA1(D) . (5.29)

Continuing with the notation of Theorem 5.7, we observe that A′1 = A2 and A′2 = A1. In
particular, the unitaries in A′2 are the unitiaries in A2, which means they have the form U ⊗ I,
where U is a unitary in Mm.

We also mention at this point that the maps D 7→ Trj(D), j = 1, 2 are not only positivity
preserving, but that they also have a stronger property known as complete positivity. This is
physically very significant, and we shall explain this later. In the meantime, let us make one more
definition, and then turn to examples and digest what has been introduced so far.

5.8 DEFINITION. The map B 7→ B on Mm×n is defined so that each entry of B is the complex
conjugate of the corresponding entry of B. This map is an antilinear isometry from Mm×n to itself.

The map B 7→ B preserves positivity: From the spectral representation written in the form
B =

∑n
j=1 λjuju

∗
j , one sees that B is unitarily equivalent to B under the unitary transformation

that takes each uj to its complex conjugate uj . In particular, if B ∈ H+
n , then B ∈ H+

n as well,
and for any f : R→ R,

f(B) = f(B) .

5.9 EXAMPLE (Tr1(|Kvec〉〈Kvec|) and Tr2(|Kvec〉〈Kvec|)). For K ∈ Mm×n with Tr[K∗K] = 1,
considered as a unit vector in Kvec in Cm ⊗ Cn, let |Kvec〉〈Kvec| denote the rank one projection
onto the span of Kvec in Cm⊗Cn. In the language and notation of quantum statistical mechanics,
this projection is a pure state density matrix on Cm ⊗ Cn. .
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By definition, for all A ∈Mm,

Tr[Tr2(|Kvec〉〈Kvec|)A] = Tr[|Kvec〉〈Kvec|(A⊗ In×n)]

= 〈Kvec, (A⊗ In×n)Kvec〉
=

∑
i,j

K∗j,i
∑
k

Ai,kKk,j

= Tr[K∗AK] = Tr[(KK∗)A] .

Thus, we have the useful identity Tr2(|Kvec〉〈Kvec|) = KK∗. Likewise, for all B ∈Mn,

Tr[Tr1(|Kvec〉〈Kvec|)B] = 〈Kvec, (Im×m ⊗B)Kvec〉
=

∑
i,j

K∗j,i
∑
`

Bj,`Ki,` =
∑
i,j

∑
`

K∗j,iKi,`Bj,`

= Tr[(K∗K)B] ,

and hence Tr1(|Kvec〉〈Kvec|) = K∗K.

This computation that

Tr1(|Kvec〉〈Kvec|) = K∗K and Tr2(|Kvec〉〈Kvec|) = KK∗

has a significant consequence:

5.10 THEOREM. For any pure state ρ on Cm⊗Cn, the two restricted density matrices Tr1ρ and
Tr2ρ have the same non-zero spectrum, including multiplicities. In particular, S(Tr1ρ) = S(Tr2ρ).

Proof: For any m×n matrix K, KK∗, K∗K and K∗K have the same non-zero spectrum, including
multiplicities, and the statement about entropy follows directly from this.

5.11 EXAMPLE (Mixed states as partial traces of pure states). Consider any ρ ∈ Sn. Let
{u1, . . . , un} be any orthonormal basis for Cn. Let Kvec ∈ Cn ⊗ Cn by given by

Kvec =
n∑
j=1

uj ⊗ ρ1/2uj .

We now claim that
Tr1(|Kvec〉〈Kvec|) = ρ .

This shows that every mixed state; i.e., densitiy matrix on Cn is the partial trace of a pure state
on Cn ⊗ Cn.

To verify the claim, consider any B ∈Mn. Then

Tr[Tr1(|Kvec〉〈Kvec|)B] = Tr[(|Kvec〉〈Kvec|(Im×m ⊗B)]

= 〈Kvec, (Im×m ⊗B)Kvec〉

=

〈
n∑
i=1

ui ⊗ ρ1/2ui , uj

n∑
j=1

uj ⊗Bρ1/2uj

〉

=
n∑

i,j=1

〈ui, uj〉〈ρ1/2ui, Bρ
1/2uj〉 = Tr[Bρ] .

(5.30)
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5.5 Ando’s identity

The next lemma records an important observation of Ando.

5.12 LEMMA (Ando’s identity). Let A ∈ H+
n , B ∈ H+

n and let K be any m×n matrix considered
as a vector in Cm ⊗ Cn. Then

〈K, (A⊗B)K〉 = Tr(K∗AKB) . (5.31)

Proof: (A⊗B)K, considered as an m× n matrix, has the entries

[(A⊗B)K]i,j =
∑
k,`

Ai,kBj,`Kk,` .

Since B ∈ Hn, Bj,` = B`,j , and so

[(A⊗B)K]i,j =
∑
k,`

Ai,kKk,`B`,j = [AKB]i,j .

Then since 〈K, (A⊗B)K〉 = Tr(K∗[A⊗B)K]), the result is proved.
One easy consequence of this identity is the following: For A ∈ H+

n , B ∈ H+
n , by cyclicity of

the trace,
〈K, (A⊗B)K〉 = Tr(B1/2

K∗AKB
1/2) = Tr(A1/2KBK∗A1/2) ,

and so the map
(A,B) 7→ (A⊗B)

on H+
n ×H+

n is monotone in each argument.

6 Lieb’s Concavity Theorem and related results

6.1 Lieb’s Concavity Theorem

In this section, we prove the following fundamental theorem of Lieb [34]:

6.1 THEOREM (Lieb’s Concavity Theorem). For all m × n matrices K, and all 0 ≤ q, r ≤ 1,
with q + r ≤ 1 the real valued map on H+

n ×H+
n given by

(A,B) 7→ Tr(K∗AqKBr) (6.1)

is concave.

The following proof is due to Ando [1]
Proof of Theorem 6.1: Since the map B 7→ B is linear over R, Theorem 5.12 shows that an
equivalent formulation of Lieb’s Concavity Theorem is that for 0 ≤ r ≤ 1,

(A,B) 7→ A1−r ⊗Br (6.2)

is concave from H+
n ×H+

n to H+
mn
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Let Ω be the subset of (0,∞)× (0,∞) consisting of points (q, r) such that (A,B) 7→ Aq ⊗Br is
concave. Obviously, (0, 1), (1, 0) and (0, 0) all belong to Ω, and hence it suffices to show that Ω is
convex. By continuity, it suffices to show that if (q1, r1), (q2, r2) ∈ Ω, then so is

(q, r) :=
(
q1 + q2

2
,
r1 + r2

2

)
.

Now observe that by (5.18), for such (p, q), (p1, q1) and (p2, q2),

Aq ⊗Br = M0(Aq1 ⊗Br1 , Aq2 ⊗Br2) .

Since (q1, r1), (q2, r2) ∈ Ω,(
A+ C

2

)qj
⊗
(
B +D

2

)rj
≥ Aqj ⊗Brj + Cqj ⊗Drj

2
j = 1, 2 .

Then by the monotonicity and concavity of the operator geometric mean,

(
A+ C

2

)q
⊗
(
B +D

2

)r
= M0

((
A+ C

2

)q1
⊗
(
B +D

2

)r1
,

(
A+ C

2

)q2
⊗
(
B +D

2

)r2)
≥ M0

(
Aq1 ⊗Br1 + Cq1 ⊗Dr1

2
,
Aq2 ⊗Br2 + Cq2 ⊗Dr2

2

)
≥ 1

2
M0(Aq1 ⊗Br1 , Aq2 ⊗Br2) +

1
2
M0(Cq1 ⊗Dr1 , Cq2 ⊗Dr2)

=
1
2
Aq ⊗Br +

1
2
Cq ⊗Dr .

This proves the midpoint concavity of (A,B) 7→ Aq ⊗ Br, and now the full concavity follows by
continuity. Thus, (q, p) ∈ Ω, as was to be shown.

6.2 Ando’s Convexity Theorem

Ando’s proof [1] of Lieb’s Concavity Theorem leads to the following significant complement to it:

6.2 THEOREM (Ando’s Convexity Theorem). For all m× n matrices K, and all 1 ≤ q ≤ 2 and
0 ≤ r ≤ 1 with q − r ≥ 1, the real valued map on H+

n ×H+
n given by

(A,B) 7→ Tr(K∗AqKB−r) (6.3)

is convex.

Ando’s Convexity Theorem, which turns out to be an easy consequence of Lieb’s Concavity
Theorem, in tensor product form, together with the joint convexity of the map (A,B) 7→ B∗A−1B,
and the fact that this map is monotone decreasing in A.
Proof of Theorem 6.2: First note that

Aq ⊗B−r = A⊗ I 1
A2−q ⊗Bp

A⊗ I . (6.4)
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Next, for 1 ≤ q ≤ 2, 0 ≤ r ≤ 1 and q − r ≥ 1, we have 0 ≤ 2 − q ≤ 1 and 0 ≤ (2 − q) + r ≤ 1.
Therefore, by Theorem 6.1, (A,B) 7→ A2−q ⊗ Br is concave, so that for all A,C ∈ H+

n and all
B,D ∈ H+

n , (
A+ C

2

)2−q
⊗
(
B +D

2

)r
≥ A2−q ⊗Br + C2−q ⊗Dr

2
. (6.5)

Thus, by the obvious monotonicity of X 7→ Y ∗X−1Y ,(
A+ C

2

)q
⊗
(
A+ C

2

)−r
=

[(
A+ C

2

)
⊗ I
][(

A+ C

2

)2−q
⊗
(
B +D

2

)r]−1 [(
A+ C

2

)
⊗ I
]

≤
[(

A+ C

2

)
⊗ I
] [

A2−q ⊗Br + C2−q ⊗Dr

2

]−1 [(
A+ C

2

)
⊗ I
]

Finally, by Theorem 3.1, which asserts the joint convexity of (X,Y ) 7→ Y ∗XY , and then (6.4) once
more, we have (

A+ C

2

)q
⊗
(
B +D

2

)−r
≤ Aq ⊗B−r + Cq ⊗D−r

2
,

which is the midpoint version of the desired convexity statement. The general case follows by
continuity.

6.3 Lieb’s Concavity Theorem and joint convexity of the relative entropy

Consider the the map

(A,B) 7→ Tr[A logA]− Tr[A log(B)] := H(A|B) (6.6)

on H+
n ×H+

n . In particular, for density matrices ρ and σ, H(ρ|σ) = S(ρ|σ), the relative entropy of
ρ with respect to σ. We shall prove:

6.3 THEOREM. The map (A,B) 7→ Tr[A logA] − Tr[A log(B)] from H+
n ×H+

n to R is jointly
convex.

Proof: For all 0 < p < 1, (A,B) 7→ Tr(A1−pBp) is jointly concave, by Lieb’s Concavity Theorem,
and thus

(A,B) 7→ 1
p− 1

(
Tr(A1−pBp)− Tr(A)

)
is convex. But

lim
p→0

1
p− 1

(
Tr(A1−pBp)− Tr(A)

)
= H(A|B) ,

and convexity is preserved in the limit.

6.4 Monotonicity of the relative entropy

6.4 THEOREM. Let A be any ∗-subalgebra of Mn. Then for any two density matrices ρ, σ ∈ Sn,

S(ρ|σ) ≥ S(EA(ρ)|EA(σ)) . (6.7)
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Proof: We suppose first that ρ and σ are both positive definite, so that (ρ̃, σ̃) 7→ S(ρ̃σ̃) is continuous
in a neighborhood of (ρ, σ). Then by Lemma 4.17, there is a sequence {Ck}n∈N of operators of the
form (4.23) such that

Eρ(σ) = lim
k→∞

Ck(ρ) and Eσ(σ) = lim
k→∞

Ck(σ) .

Then by the joint convexity of the relative entropy from Theorem 6.3, and the unitary invariance
of the relative entropy; i.e., S(UρU∗|UσU∗) = S(ρ|σ), and the specific form (4.23) of Ck, we have
that for each n,

S(Ck(ρ)|Ck(σ)) ≤ S(ρ|σ) .

Now taking k to infinity, we obtain the result for positive definite ρ and σ.
To pass to the general case, replace ρ and σ by ρε := (1−ε)ρ+(ε/n)I and σε := (1−ε)σ+(ε/n)I

respectively with 1 > ε > 0. Note that since I ∈ A,

EA((1− ε)ρ+ (ε/n)I) = (1− ε)EA(ρ) + (ε/n)I = (EA(ρ))ε ,

and likewise, EA(σε) = (EA(σ))ε. Therefore

S(ρε|σε) ≥ S(EA(ρε)|EA(σε))

= S((EA(ρ))ε|(EA(σ))ε) .

By the approximation results of the previous section, taking ε to zero yields the full result.

6.5 Subadditivity and strong subadditivity of the entropy

Consider a density matrix ρ on the the tensor product H1 ⊗H2 of two finite dimensional Hilbert
spaces. To be concrete, we may as well suppose that for some m and n, H1 = Cm and H2 = Cn.
Let ρ1 = Tr2ρ be the density matrix on H1 obtained by taking the partial trace over H2 of ρ, and
let ρ2 be defined in the analogous way.

Then ρ1 ⊗ ρ2 is a density matrix on H1 ⊗H2, and by Klein’s inequality,

S(ρ|ρ1 ⊗ ρ2) ≥ 0

with equality if and only if ρ1⊗ ρ2 = ρ. Let us assume that ρ is strictly positive, so that ρ1 and ρ2

are also strictly positive, and compute the left hand side.
Then since log(ρ1)⊗ IH2 and IH1 ⊗ log(ρ1) commute, it is clear that

exp(log(ρ1)⊗ IH2 + IH1 ⊗ log(ρ1)) = exp(log(ρ1)⊗ IH2) exp(IH1 ⊗ log(ρ1)) =

(ρ1 ⊗ IH2) (IH1 ⊗ ρ1) = ρ1 ⊗ ρ2 . (6.8)

It follows that
log(ρ1 ⊗ ρ2) = log(ρ1)⊗ IH2 + IH1 ⊗ log(ρ1) ,

and hence that

S(ρ|ρ1 ⊗ ρ2) = −S(ρ)− Tr [ρ (log(ρ1)⊗ IH2 + IH1 ⊗ log(ρ1))]

= −S(ρ) + S(ρ1) + S(ρ2)
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where we have used the definition of the partial trace in the second equality. Since the left hand
side in non-negative by Kelin’s inequality, we conclude that S(ρ) ≤ S(ρ1)+S(ρ2). This inequality is
known as the subadditivity of the quantum entropy. We summarize our conclusions in the following
theorem:

6.5 THEOREM (Subadditivity of quantum entropy). Let ρ be a density matrix on the the tensor
product H1 ⊗ H2 of two finite dimensional Hilbert spaces. For j = 1, 2, let ρj denote the density
matrix on Hj obtained by taking the partial trace of ρ over the other Hilbert space. Then

S(ρ) ≤ S(ρ1) + S(ρ2) , (6.9)

and there is equality if and only if ρ1 ⊗ ρ2 = ρ.

Note that the dimension does not really enter our considerations, and so this ineuqlaity is easily
generalized to the infinite dimensional case. In the spirit of these notes, we leave tis to the reader.

There is a much deeper subadditivity inequality for density matrices on a tensor product of
three Hilbert spaces H1⊗ h2⊗H3. Let ρ be a density matrix. By taking the various partial traces
of ρ, we obtain various density matrices from ρ. We shall use the following notation for these:

ρ123 := ρ ρ23 := Tr1ρ , ρ3 := Tr12ρ

and so forth, where Tr1 denotes the partial trace over H1, Tr12 denotes the partial trace over
H1 ⊗H2 and so forth. (That is, the subscripts indicate the spaces “remaining” after the traces.)

6.6 THEOREM (Strong subadditivity of quantum entropy). Let ρ be a density matrix on the the
tensor product H1 ⊗H2 ⊗H3 of three finite dimensional Hilbert spaces. Then, using the notation
introduced above

S(ρ13) + S(ρ23) ≥ S(ρ123) + S(ρ3) . (6.10)

This theorem was conjectured by Lanford, Robinson and Ruelle, [43] and was proved by Lieb
and Ruskai [37].

Proof of Theorem 6.6: As in the proof of Theorem 6.5, we compute that

S(ρ123|ρ12 ⊗ ρ3) = −S(ρ123) + S(ρ12) + S(ρ3) .

Now let A be the ∗-subalgebra of operators on H1 ⊗H2 ⊗H3 of the form IH1 ⊗ A where A is an
operator on H2 ⊗H3. Then by the monotonicity of the relative entropy, Thoerem 6.4,

S(ρ123|ρ12 ⊗ ρ3) ≥ S(EA(ρ123)|EA(ρ12 ⊗ ρ3)) . (6.11)

But by Thoerem 5.7,

EA(ρ123) =
1

dim(H1)
IH1 ⊗ ρ23 and EA(ρ12 ⊗ ρ3) =

1
dim(H1)

IH1 ⊗ (ρ2 ⊗ ρ3) . (6.12)

Therefore, by Theorem 6.5,

S(EA(ρ123)|EA(ρ12 ⊗ ρ3)) = −S(ρ23) + S(ρ2) + S(ρ3) .

Combining this with (6.11) and (6.12) yields (6.10).
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7 Lp norms for matrices and entropy inequalities

In this section, we shall prove various Lp norm inequalities for matrices that have a connection
with quantum entropy. The basic idea is this: Let ρ ∈ Sn. Then the map

p 7→ Tr[ρp]

is differentiable at p = 1, and

d
dp

Tr[ρp]
∣∣∣∣
p=1

= Tr[ρ log(ρ)] = −S(ρ).

The inequalities we obtain in this section will be of interest in their own right, but shall also lead
to new proofs of entropy inequalities such as strong subadditivitiy of quantum entropy. We begin
with an elementary introduction to the matricial analogs of the Lp norms.

7.1 The matricial analogs of the Lp norms

Let Mn denote the set of n × n matrices with complex entries, and let A∗ denote the Hermitian
conjugate of A ∈Mn. For 0 < p <∞, and A ∈Mn, define

‖A‖q = (Tr[(A∗A)q/2])1/q .

For q ≥ 1, this defines a norm on Mn, but not for q < 1. Nonetheless, it will be convenient here to
use this notation for all q > 0.

We shall now show that ‖ · ‖q is in fact a norm for q ≥ 1.
Note that if {u1, . . . , un} be an orthonormal basis of Cn consisting of eigenvectors of |A| with

|A|uj = λjuj , then

‖A‖q = (Tr[(A∗A)q/2])1/q = (Tr[|A|q])1/q =

 n∑
j=1

λqj

1/q

.

The eigenvalues of |A| are known as the singular values of A. Thus, ‖A‖q is the `q norm of the
sequence of singular values of A.

7.1 THEOREM (Duality formula for ‖A‖q). For all q ≥ 1, define p by 1/q + 1/p = 1. Then for
all A in Mn,

‖A‖q = sup
B∈Mn

{Tr[B∗A] : ‖B‖p = 1 } .

Proof: For any invertible A,B ∈Mn let A = U |A| and B = V |B| be their polar decompositions,
and let W = V ∗U . Let {u1, . . . , un} be an orthonormal basis of Cn consisting of eigenvectors of
|B| with |B|uj = λjuj . Then

Tr(B∗A) =
n∑
j=1

〈uj , |B|W |A|uj〉 =
n∑
j=1

λj〈uj ,W |A|uj〉 . (7.1)
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By Hölder’s inequality, for any q > 1 and p = q/(q − 1),∣∣∣∣∣∣
n∑
j=1

λj〈ujW |A|uj〉

∣∣∣∣∣∣ ≤
 n∑
j=1

λpj

1/p n∑
j=1

|λj〈uj ,W |A|uj〉|q
1/q

= ‖B‖p

 n∑
j=1

|λj〈uj ,W |A|uj〉|q
1/q

. (7.2)

Now define vj = W ∗uj . Then by the Schwarz inequality twice , and then Peierl’s inequality,

n∑
j=1

|λj〈uj ,W |A|uj〉| ≤
n∑
j=1

〈vj , |A|vj〉1/2〈uj , |A|uj〉1/2

≤

 n∑
j=1

〈vj , |A|vj〉

1/2 n∑
j=1

〈uj , |A|uj〉

1/2

≤ (Tr[|A|q])1/2 (Tr[|A|q])1/2 = ‖A‖qq . (7.3)

Combining (7.1), (7.2) and (7.3), we have

|Tr(B∗A)| ≤ ‖B‖p‖A‖q , (7.4)

which is the tracial version of Hölder’s inequality, and we note that if B = ‖A‖1−qq U |A|q−1, then
‖B‖p = 1 and

Tr(B∗A) = ‖A‖1−qq Tr
[
|A|q−1U∗U |A|

]
= ‖A‖1−qq Tr [|A|q] = ‖A‖q .

Combining this with (7.4) yields the result.
Starting from Theorem 7.1, the proof of the Minkowski inequality for ‖ · ‖q proceeds exactly as

it does for the Lp norms: Given A,C ∈Mn,

‖A+ C‖q = sup
B∈Mn

{|Tr[B∗(A+ C)]| : ‖B‖p = 1 }

≤ sup
B∈Mn

{|Tr[B∗A]| : ‖B‖p = 1 }+ sup
B∈Mn

{|Tr[B∗C]| : ‖B‖p = 1 }

= ‖A‖q + ‖C‖q .

7.2 Convexity of A 7→ Tr
[
(B∗ApB)q/p

]
and certain of its applications

For any fixed B ∈Mn and any numbers p, q > 0, define Υp,q on H+
n by

Υp,q(A) = Tr
[
(B∗ApB)q/p

]
. (7.5)

7.2 THEOREM. For all 1 ≤ p ≤ 2, and for all q ≥ 1, Υp,q is convex on H+
n . For 0 ≤ p ≤ q ≤ 1,

Υp,q and is concave on H+
n . For p > 2, Υp,q is not convex or concave for any values of q 6= p.
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7.3 REMARK. The function Υ1/q
p,q has the same convexity and concavity properties as Υp,q. To

see this, note that Note that Υp,q is homogeneous of degree q ≥ 1. Recall that a function f that is
homogeneous of degree one is convex if and only if the level set {x : f(x) ≤ 1} is convex, while it
is concave if and only if the level set ( {x : f(x) ≥ 1}) is convex. Hence, if g(x) is homogeneous
of degree q, and convex, so that {x : g(x) ≤ 1} ({x : f(x) ≥ 1}) is convex, g1/q is convex, and
similarly for concavity.

The concavity of Υp,1 for 0 < p < 1 was proved by Epstein [23]. The convexity of Υp,1 was
conjectured for 1 < p < 2 and proved for p = 2 in [11], where it was also proved that neither
concavity nor convexity held for p > 2. Finally the convexity 1 < p < 2 was proved in [16], where
the generalization to q 6= 1 was also treated.

Before giving the proof of Theorem 7.2, we give several applications.

7.4 THEOREM (Lieb-Thirring trace inequality). For all A,B ∈ H+
n and all t > 1,

Tr
[
(B1/2AB1/2)t

]
≤ Tr

[
Bt/2AtBt/2

]
. (7.6)

Proof: Define C = At and p = 1/t ≤ 1, so that A = Cp. Then

Tr
[
(B1/2AB1/2)t

]
− Tr

[
Bt/2AtBt/2

]
= Tr

[
(B1/2CpB1/2)1/p

]
− Tr

[
CB1/p

]
,

and by Epstein’s part of Theorem 7.2 the right hand side is a concave function of C. Now we
apply Example 4.15: Choose an orthonormal basis {u1, . . . , un} diagonalizing B. Let A be the
∗-subalgebra of Mn consisting of matrices that are diagonal in this basis. Then as shown in
Example 4.15, EA(C) is an average over unitary conjugates of C, by unitaries that commute with
B. It follows that

Tr
[
(B1/2CpB1/2)1/p

]
− Tr

[
CB1/p

]
≥ Tr

[
(B1/2(EA(C))pB1/2)1/p

]
− Tr

[
(EA(C))B1/p

]
.

However, since EA(C) and B commute, the right hand side is zero.
Theorem 7.4 was first proved in [39], and has had many applications since then. The next

application is taken from [11, 12]. We first define another trace function:
For any numbers p, q > 0, and any positive integer m, define Φp,q on (H+

n )m, the m-fold cartesian
product of H+

n with itself by

Φp,q(A1, . . . , Am) = ‖ (
∑m

j=1A
p
j )

1/p ‖q . (7.7)

7.5 THEOREM. For all 1 ≤ p ≤ 2, and for all q ≥ 1, Φp,q is jointly convex on (H+
n )m, while for

For 0 ≤ p ≤ q ≤ 1, Φp,q is jointly concave on (H+
n )m. For p > 2, Φp,q is not convex or concave,

even separately, for any values of q 6= p.

Proof : Define the mn×mn matrices A =

 A1 0
. . .

0 Am

 and B =

 I 0 . . . 0
...

...
...

I 0 . . . 0

.

(A is block diagonal with Aj as the jth diagonal block, and B has n× n identities in each block in
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the first column, and zeros elsewhere.) Then BApB is the block matrix with
∑m

j=1A
p
j in its upper

left block, and zeros elsewhere. Thus,(
Tr
[(∑m

j=1A
p
j

)q/p])1/q

=
(

Tr
[
(BApB)q/p

])1/q
.

By Theorem 7.2 and Remark 7.3, the right hand side is convex in A for all 1 ≤ p ≤ 2, q ≥ 1, and
concave in A for 0 ≤ p ≤ q ≤ 1.

We now show, by means of a Taylor expansion, that both convexity and concavity fail for p > q

and any q 6= p. By simple differentiation one finds that for any A,B ∈ H+
n ,

Φp,q(tA,B) = ‖B‖q +
tp

p
‖B‖1−qq TrApBq−p +O(t2p) . (7.8)

Keeping B fixed, but replacing A by A1, A2 and (A1 +A2)/2, we find

1
2

Φp,q(tA1, B) +
1
2

Φp,q(tA2, B)− Φp,q

(
t
A1 +A2

2
, B

)
=

tp

p
‖B‖1−qq

[
1
2

Tr
(
Ap1B

q−p)+
1
2

Tr
(
Ap2B

q−p)− Tr
((

A1 +A2

2

)p
Bq−p

)]
+O(t2p) .

Now if p > 2, A 7→ Ap is not operator convex, and so we can find A1 and A2 in H+
n and a unit

vector v in Cn such that

1
2
〈v,Ap1v〉+

1
2
〈v,Ap2v〉 −

〈
v,

(
A1 +A2

2

)p
v

〉
< 0 , (7.9)

and of course since A 7→ Tr(Ap) is convex for p > 2, we can find v so that the left hand side in (7.9)
is positive. For q 6= p, take Bq−p to be (a close approximation of) the rank one projection onto v.

7.6 REMARK. We showed in the proof of Theorem 7.5 that Φp,q is convex or concave for given
p and q whenever Υp,q is. Thus our proof that Φp,q is not convex or concave for p > 2 and q 6= p

implies this part of Theorem 7.2

We now define one more trace function, and make a simple reformulation of Theorem 7.5 that
will lead to another proof of the strong subadditivity of quantum entropy.

For any numbers p, q > 0, and any positive integers m and n, define Ψp,q on H+
mn, veiwed as

the space of linear operators on Cm ⊗ Cn by

Ψp,q(A) = ‖ (Tr1A
p)1/p ‖q . (7.10)

7.7 THEOREM. For 1 ≤ p ≤ 2 and q ≥ 1, Ψp,q is convex on H+
mn, while for 0 ≤ p ≤ q ≤ 1, Ψp,q

is concave on H+
mn.

Proof: We shall apply Theorem 5.7. Let A be the subalgebra of Mmn, identified with Cn ⊗ Cn,
consisting of operators of the form Im×m ⊗B, B ∈Mn. By Theorem 5.7,

In×n ⊗ Tr1A
p = EA(Ap) ,
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and so
Ψp,q(Ap) = n1/q‖ (EA(Ap))1/p ‖q . (7.11)

The fsctor of n1/q does not affect the convexity properties of Ψp,q, and so it suffices to consider the
convexity properties of A 7→ ‖ (EA(Ap))1/p ‖q.

By Theorem 4.13 and the remark following its proof, EA(Ap) is a limit of operators Ck(Ap) of
the form

Ck(Ap) =
Nk∑
j=1

pk,jIm×m ⊗Wk,jA
pIm×m ⊗W ∗k,j . (7.12)

where each Wk,j is a unitary matrix in A′ (which means that is has the form Im×m ⊗ U where U
is unitary in Mn). But then

Ψp,q(A) = lim
k→∞

Tr


 Nk∑
j=1

pk,jWk,jA
pW ∗k,j

1/p


= lim
k→∞

Tr


 Nk∑
j=1

pk,j

(
p

1/p
k,jWk,jAW

∗
k,j

)p1/p


= lim
k→∞

Φp,q

(
p

1/p
k,1Wk,1AW

∗
k,1 , . . . , p

1/p
k,Nk

Wk,Nk
AW ∗k,Nk

)
.

since a limit of convex functions is convex, we see that Ψp,q is convex or concave whenever Φp,q

is. The reverse implication is even more elementary: To see this, suppose that the matrix A in
Theorem 7.7 is the block diagonal matrix whose jth diagonal block is Aj . Then, clearly, Ψp,q(A) =
Φp.q(A1, A2, . . . , Am).

We now return to the theme with which we began this section, and explain how to deduce the
strong subadditivity of quantum entropy from Theorem 7.7.

Let ρ be a density matrix on H1 ⊗H2 = Cm ⊗ Cn. Let ρ1 = TrH2ρ and ρ2 = TrH1ρ be its two
partial traces. As in our previous discusion of subadditivity, we shall also use ρ12 to denote the full
density matrix ρ.

Then a simple calculation shows that

d
dp

Ψp,1(ρ)
∣∣∣∣
p=1

= S(ρ2)− S(ρ12) . (7.13)

To see this, observe that for a positive operator A, and ε close to zero,

A1+ε = A+ εA lnA+O(ε2) .

At least in finite dimensions, one can take a partial trace of both sides, and the resulting identity
still holds.

Applying this with A = ρ = ρ12, we compute

TrH1

(
ρ1+ε

)
= ρ2 + εTrH1(ρ12 ln ρ12) +O(ε2) .

Then, since to leading order in ε, 1/(1 + ε) is 1− ε,[
TrH1(ρ1+ε)

]1/(1+ε) = ρ2 + εTrH1((ρ12 ln ρ12)− ερ2 ln ρ2 +O(ε2) .



53

Thus,
TrH2(

([
TrH1((ρ1+ε)

]1/(1+ε)
)

= 1− εS(ρ12) + εS(ρ2) +O(ε2) . (7.14)

This proves (7.13).
Now we apply Theorem 7.7. Let us take the case where H2 is repalced by a tensor product of

two finite dimensional Hilbert spaces H2⊗H3, so that we identify operators on H1⊗H2⊗ h3 with
Mmn where m = dim(H1) and n = dim(H2) × dim(H2). Let A denote the 8-subalgebra of Mmn

consisting of operators of the form A⊗ IH3 where A is an operator on H1 ⊗H2.
We now claim that for any density matrix ρ123 on H1 ⊗H2 ⊗H3,

Ψp,1(ρ123) ≥ Ψp,1(EA(ρ123)) (7.15)

. To see this, we apply Theorem 4.13 as in the proof of Theorem 7.7, together with the fact that
the unitaries in A′ are of the form IH1⊗H2 ⊗ U , where U is unitary on H3.

Then by (7.13) and Theorem 5.7),

d
dp

Ψp,1(EA(ρ123))
∣∣∣∣
p=1

= S(TrH1 [EA(ρ123)])− S(EA(ρ123))

= S(ρ2)− S(ρ12)) .

Also, directly from (7.13),

d
dp

Ψp,1(ρ123)
∣∣∣∣
p=1

= S(ρ23)− S(ρ123) . (7.16)

Then, since at p = 1, both sides of (7.15) equal one,

S(ρ23)− S(ρ123) ≥ S(ρ2)− S(ρ12)) ,

which of course is equivalent to (6.10).
This shows that the strong subadditivity of quantum entropy is can be viewed as a consequence,

via differentiation in p, of the inequality of Theorem 7.7. One may therefore view the inequality of
Theorem 7.7 as a generlaization of the strong subadditivity inequality. For anotherLp inequality
that can be differentiated to yield strong subadditivity, namely a Minkowski type inequality for
traces of operaotrs on a tensor product of three Hilbert spaces, see [11, 12]. For other applications
of Theorem 7.2, see [12].

7.3 Proof of the convexity of A 7→ Tr
[
(B∗ApB)q/p

]
We now close this section by proving Theorem 7.2, and thus completing the proofs of all of the
theorems in this subsection.

We prepare the way for the proof of Theorem 7.2 with some lemma. The proof of convexity of
Υp,q divides into two cases, namely 1 ≤ q ≤ p ≤ 2 and 1 ≤ p ≤ 2 with q > p.

The latter case, q > p, is the easier one, and the next lemma takes care of it:

7.8 LEMMA. For 1 ≤ p ≤ 2 and q > p, Υp,q is convex on H+
n .
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Proof: Since r := q/p ≥ 1 and since B∗ApB ≥ 0, we can write

‖B∗ApB‖r = sup
‖Y ‖r′ ≤ 1,

Y ≥ 0

Tr(B∗ApBY ) (7.17)

where 1/r + 1/r′ = 1. Since Ap is well known to be operator convex in A for 1 ≤ p ≤ 2, so is
B∗ApB. Since the right side of (7.17) is the supremum of a family of convex functions (note that
Y ≥ 0 is needed here) we conclude that ‖B∗ApB‖r is convex. (Υp,q(A) is the rth power of this
quantity and is therefore convex.)

The case q < p requires more tool. The first of these is a variational formula for pth roots.
For r > 1, and c, x > 0, the arithmetic–geometric mean inequality says

1
r
cr +

r − 1
r

xr ≥ cxr−1 ,

and hence

c =
1
r

inf
{

cr

xr−1
+ (r − 1)x : x > 0

}
. (7.18)

With the infimum replaced by a supremum, the resulting formula is valid for for 0 < r < 1, as
one easily checks.

We shall build this into a variational formula for Υp,q. It is first useful to note that since B∗ApB
and Ap/2BB∗Ap/2 have the same spectrum,

Υp,q(A) = Tr
[
(Ap/2BB∗Ap/2)q/p

]
. (7.19)

7.9 LEMMA. For any positive n× n matrix A, and with r = p/q > 1,

Υp,q(A) =
1
r

inf
{

Tr
[
Ap/2B

1
Xr−1

B∗Ap/2 + (r − 1)X
]

: X > 0
}

(7.20)

where the infimum is taken over all positive n × n matrices X. Likewise, if the infimum replaced
by a supremum, the resulting formula is valid for r = p/q < 1.

Proof: Let C = B∗Ap/2. By continuity we may assume that C∗C is strictly positive. Then, for
r > 1, there is a minimizing X. Let

Y = X1−r

and note that minimizing

Tr
[
Ap/2B

1
Xr−1

B∗Ap/2 + (r − 1)X
]

with respect to X > 0 is the same as minimizing

Tr
(
CC∗Y + (r − 1)Y −1/(r−1)

)
with respect to Y > 0. Since the minimizing Y is strictly positive, we may replace the minimizing
Y by Y + tD, with D self adjoint, and set the derivative with respect to t equal to 0 at t = 0. This
leads to TrD[CC∗ − Y −r/(r−1)] = 0. Therefore Y −r/(r−1) = CC∗ and we are done. The variational
formula for p/q < 1 is proved in the same manner.
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7.10 LEMMA. If f(x, y) is jointly convex, then g(x) defined by g(x) = infy f(x, y) is convex. The
analogous statement with convex replaced by concave and infimum replaced by supremum is also
true.

Proof: For ε > 0, choose (x0, y0) and (x1, y1) so that

f(x0, y0) ≤ g(x0) + ε and f(x1, y1) ≤ g(x1) + ε .

Then:

g((1− λ)x0 + λx1) ≤ f((1− λ)x0 + λx1, (1− λ)y0 + λy1)

≤ (1− λ)f(x0, y0) + λf(x1, y1)

≤ (1− λ)g(x0) + λg(x1) + ε .

On account of Lemmas 7.9 and 7.10 we shall be easily able to prove the stated convexity and
concavity properties of Υp,q once we have proved:

7.11 LEMMA. The map

(A,X) 7→ Tr
(
Ap/2B∗

1
Xr−1

BAp/2
)

(7.21)

is jointly convex on H+
n ×H+

n for all 1 ≤ r ≤ p ≤ 2 and is jointly concave for all 0 < p < r < 1.

Proof: We first rewrite the right hand side of (7.21) in a more convenient form: Define

Z =

[
A 0
0 X

]
and K =

[
0 0
B 0

]
so that K∗Z1−pK =

[
B∗X1−pB 0

0 0

]
.

Then, by cyclicity of the trace, Tr(ZpK∗Z1−rK) = Tr
(
Ap/2B∗

1
Xr−1

BAp/2
)

Note that convex-

ity/concavity of the left hand side in Z is the same as convexity/concavity of the right hand side in
(A,X). The result now follows from Theorem 6.1, the Lieb Concavity Theorem and Theorem 6.2,
the Ando Convexity Thoerem.
Proof of Theorem 7.2: By Lemma 7.11, the mapping in (7.21) is jointly convex for 1 ≤ r ≤ p ≤ 2.
Then taking r = p/q, we have from Lemma 7.9 and Lemma 7.10 Υp,q(A) = infX f(A,X) where
f(A,X) is jointly convex in A and X. The convexity of Υp,q now follows by Lemma 7.10. The
concavity statement is proved in the same way. We have already observed that Φp,q inherits its
convexity and concavity properties from those of Υp,q, and thus, having shown in the proof of
Theorem 7.5 that Φp,q is neither convex nor concave for p > 2 and q 6= p, the same is true for Υp,q.

8 Brascamp-Lieb type inequalities for traces

We recall the original Young’s inequality: For non-negative measurable functions f1, f2 and f3 on
R, and 1/p1 + 1/p2 + 1/p3 = 2∫

R2

f1(x)f2(x− y)f3(y)dxdy ≤ (∫
R
fp11 (t)dt

)1/p1 (∫
R
fp22 (t)dt

)1/p2 (∫
R
fp33 (t)dt

)1/p3

. (8.1)
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Define the maps φj : R2 → R, j = 1, 2, 3, by

φ1(x, y) = x φ2(x, y) = x− y and φ3(x, y) = y .

Then (8.1) can be rewritten as∫
R2

 3∏
j=1

fj ◦ φj

 d2x ≤
3∏
j=1

(∫
R
f
pj

j (t)dt
)1/pj

. (8.2)

There is now no particular reason to limit ourselves to products of only three functions, or to
integrals over R2 and R, or even any Euclidean space for that matter:

8.1 DEFINITION. Given measure spaces (Ω,S, µ) and (Mj ,Mj , νj), j = 1, . . . , N , not nec-
essarily distinct, together with measurable functions φj : Ω → Mj and numbers p1, . . . , pN with
1 ≤ pj ≤ ∞, 1 ≤ j ≤ N , we say that a generalized Young’s inequality holds for {φ1, . . . , φN} and
{p1, . . . , pN} in case there is a finite constant C such that∫

Ω

N∏
j=1

fj ◦ φjdµ ≤ C
N∏
j=1

‖fj‖Lpj (νj) (8.3)

holds whenever fj is non negative and measurable on Mj , j = 1, . . . , N .

8.1 A generalized Young’s inequality in the context of non commutative inte-

gration

In non commutative integration theory, as expounded by I. Segal and J. Dixmier, the basic data is
an operator algebra A equipped with positive linear functional λ.

The algebra A corresponds to the algebra of bounded measurable functions, and applying the
linear positive linear functional λ to a positive operator corresponds to taking the integral of a
positive function. That is,

A 7→ λ(A) corresponds to f 7→
∫
M
fdν .

To frame an analog of (8.3) in an operator algebra setting, we replace the measure spaces by
non commutative integration spaces:

(Mj ,Mj , νj) −→ (Aj , λj) j = 1, . . . , N

and
(Ω,S, µ) −→ (B, λ) .

The right hand side of (8.3) is easy to generalize to the operator algebra setting; for A ∈ (A, λ),
and 1 ≤ q ≤ ∞, we define

‖A‖q,λ =
(
λ(A∗A)q/2

)1/q
.

Then the natural analog of the right hand side of (8.3) is

N∏
j=1

‖Aj‖(qj ,λj) .
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As for the left hand side of (8.3), regard fj 7→ fj ◦ φj as a W ∗ algebra endomorphism (which,
restricted to the algebra L∞(Mj), it is), and suppose we are given W ∗ endomorphisms

φj : Aj → A .

Then each φj(Aj) belongs to A, however in the non commutative case, the product of the φj(Aj)
depends on the order, and need not be self adjoint even – let alone positive – even if each of the
Aj are positive.

Therefore, let us return to the left side of (8.3), and suppose that each fj is strictly positive.
Then defining

hj = ln(fj) so that fj ◦ φj = eh◦φj ,

we can then rewrite (8.3) as∫
Ω

exp

 N∑
j=1

hj ◦ φj

 dµ ≤ C
N∏
j=1

‖ehj‖Lpj (νj) , (8.4)

We can now formulate our operator algebra analog of (8.3):

8.2 DEFINITION. Given non commutative integration spaces (A, λ) and (Aj , λj), j = 1, . . . , N ,
together with C∗ algebra endomorphisms φj : Aj → A, j = 1, . . . , N , and indices 1 ≤ pj ≤ ∞,
j = 1, . . . , N , a generalized Young’s inequality holds for {φ1, . . . , φN} and {p1, . . . , pN} if there is a
finite constant C so that

λ

exp

 N∑
j=1

φj(Hj)

 ≤ C N∏
j=1

(λj exp [pjHj ])
1/pj (8.5)

whenever Hj is self adjoint in Aj , j = 1, . . . , N .

We are concerned with determining the indices and the best constant C for which such an
inequality holds, and shall focus on one example arising in mathematical physics.

8.2 A generalized Young’s inequality for tensor products

Let Hj , j = 1, . . . , n be separable Hilbert spaces, and let Let K denote the tensor product

K = H1 ⊗ · · · ⊗ Hn .

Define A to be B(K), the algebra of bounded operators on K, and define λ to be the trace Tr
on K, so that (A, λ) = (B(K),Tr).

For any non empty subset J of {1, . . . , n}, let KJ denote the tensor product

KJ = ⊗j∈JHj .

Define AJ be B(KJ), the algebra of bounded operators on KJ , and define λJ be the trace on KJ ,
so that (AJ , λJ) = (B(KJ),TrJ).

There are natural endomorphisms φJ embedding the 2n − 1 algebras AJ into A. For instance,
if J = {1, 2},

φ{1,2}(A1 ⊗A2) = A1 ⊗A2 ⊗ IH3 ⊗ · · · ⊗ IHN
, (8.6)
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and is extended linearly.
It is obvious that in case J∩K = ∅ and J∪K = {1, . . . , n}, then for all HJ ∈ AJ and HK ∈ AK ,

Tr
(
eHJ+HK

)
= TrJ

(
eHJ

)
TrK

(
eHK

)
, (8.7)

but things are more interesting when J ∩K 6= ∅ and J and K are both proper subsets of {1, . . . , n}.

8.3 THEOREM (C. and Lieb, 2008). Let J1, . . . , JN be N non empty subsets of {1, . . . , n} For
each i ∈ {1, . . . , n}, let p(i) denote the number of the sets J1, . . . , JN that contain i, and let p denote
the minimum of the p(i). Then, for self adjoint operators Hj on KJj , j = 1, . . . , N ,

Tr

exp

 N∑
j=1

φJj (Hj)

 ≤ N∏
j=1

(
TrJj e

qHj
)1/q

(8.8)

for all 1 ≤ q ≤ p, while for all q > p, it is possible for the left hand side to be infinite, while the
right hand side is finite.

Note that in the generalized Young’s inequality in Theorem 8.3, the constant C in Definition
(8.2) is 1.

The fact that the the constant C = 1 is best possible, and that the inequality cannot hold for
q > p is easy to see by considering the case that each Hj has finite dimension dj , and Hj = 0 for
each j. Then

Tr

exp

 N∑
j=1

φJj (Hj)

 =
n∏
k=1

dk

N∏
j=1

(
TrJje

qHj
)1/q

=
N∏
j=1

∏
k∈Jj

d
1/q
k =

n∏
k=1

d
p(k)/q
k .

Moreover, since for q > p,
(
Tr epHj

)1/p
>
(
Tr eqHj

)1/q, it suffices to prove the inequality (8.8) for
q = p. We will do this later in this section.

As an example, consider the case of overlapping pairs with a periodic boundary condition:

Jj = {j, j + 1} j = 1, . . . , n− 1 and Jn = {n, 1} .

Here, N = n, and obviously p = 2. Therefore,

Tr

exp

 N∑
j=1

φj(Hj)

 ≤ N∏
j=1

(
Tr e2Hj

)1/2
. (8.9)

The inequality (8.9) has an interesting statistical mechanical interpretation as a bound on the
partition function of an arbitrarily long chain of interacting spins in terms of a product of partition
functions of simple constituent two–spin systems.

Again, the inequality (8.9) is non trivial dues to the “overlap” in the algebras Aj .
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8.3 Subadditivty of Entropy and Generalized Young’s Inequalities

In the examples we consider, the positive linear functionals λ under consideration are either traces
or normalized traces. Throughout this section, we assume that our non commutative integration
spaces (A, λ) are based on tracial positive linear functionals λ. that is, we require that for all
A,B ∈ A,

λ(AB) = λ(BA) .

In such a non commutative integration space (A, λ), a probability density is a non negative
element ρ of A such that λ(ρ) = 1. Indeed, the tracial property of λ ensures that

λ(ρA) = λ(Aρ) = λ(ρ1/2Aρ1/2)

so that A 7→ λ(ρA) is a positive linear functional that is 1 on the identity.
Now suppose we have N non commutative integration spaces (Aj , λj) and C∗ endomorphisms

φj : Aj → A. Then these endomorphisms induce maps from the space of probability densities on
A to the spaces of probability densities on the Aj :

For any probability density ρ on (A, λ), let ρj be the probability density on (Aj , λj) by

λj(ρjA) = λ(ρφj(A))

for all A ∈ Aj .

For example, in the setting we are discussion here, ρJj is just the partial trace of ρ over ⊗k∈Jc
j
Hk

leaving an operator on ⊗k∈Jj
Hk.

In this section, we are concerned with the relations between the entropies of ρ and the ρ1, . . . , ρN .
The entropy of a probability density ρ, S(ρ), is defined by

S(ρ) = −λ(ρ ln ρ) .

Evidently, the entropy functional is concave on the set of probability densities.

8.4 DEFINITION. Given tracial non commutative integration spaces (A, λ) and (Aj , λj), j =
1, . . . , N , together with C∗ algebra endomorphisms φj : Aj → A, j = 1, . . . , N , and numbers
1 ≤ pj ≤ ∞, j = 1, . . . , N , a generalized subadditivity of entropy inequality holds if there is a finite
constant C so that

N∑
j=1

1
pj
S(ρj) ≥ S(ρ)− lnC (8.10)

for all probability densities ρ in A.

8.5 THEOREM (Non-cummutative version of C. and Coredero-Erausquin). Let (A, λ) and
(Aj , λj), j = 1, . . . , N , be tracial non commutative integration spaces. Let φj : Aj → A, j = 1, . . . , N
be C∗ algebra endomorphisms.

Then for any numbers 1 ≤ pj ≤ ∞, j = 1, . . . , N , and any finite constant C, the generalized
subadditivity of entropy inequality

N∑
j=1

1
pj
S(ρj) ≥ S(ρ)− lnC
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is true for all probability densities ρ on A if and only if the generalized Young’s inequality

λ

exp

 N∑
j=1

φj(Hj)

 ≤ C N∏
j=1

(λj exp [pjHj ])
1/pj

is true for all self adjoint Hj ∈ Aj, j = 1, . . . , N , with the same p1, . . . , pN and the same C.

Recall that the domain of definition of the von Neuman sentropy S is extended from Sn to all
of Hn by:

S(A) =

{
−λ(A lnA) if A ≥ 0 and λ(A) = 1,

−∞ otherwise.
(8.11)

In previous lectures, we have proved:

8.6 LEMMA. Let A be B(H), the algebra of bounded operators on a separable Hilbert space H.
Let λ denote either the trace Tr on H, or, if H is finite dimensional, the normalized trace τ . Then
for all A ∈ Asa,

−S(A) = sup
H∈Asa

{
λ(AH)− ln

(
λ
(
eH
))}

.

The supremum is an attained maximum if and only if A is a strictly positive probability density, in
which case it is attained at H if and only if H = lnA + cI for some c ∈ R. Consequently, for all
H ∈ Asa,

ln
(
λ
(
eH
))

= sup
A∈Asa

{λ(AH) + S(A)} .

The supremum is a maximum at all points of the domain of ln
(
λ
(
eH
))

, in which case it is attained
only at the single point A = eH/(λ(eH)).

Proof of Theorem 8.5: Suppose first that the generalized Young’s inequality (8.5) holds. Then,
for any probability density ρ in A, and any self adjoint Hj ∈ Aj , j = 1, . . . , N , we have

−S(ρ) ≥ λ

ρ
 N∑
j=1

φj(Hj)

− ln

λ
exp

 N∑
j=1

φj(Hj)


=

N∑
j=1

λj(ρjHj)− ln

λ
exp

 N∑
j=1

φj(Hj)


≥

N∑
j=1

λj(ρjHj)− ln

C N∏
j=1

λj
(
epjHj

)1/pj


=

N∑
j=1

1
pj

[
λj(ρj [pjHj ])− ln

(
λj

(
e[pjHj ]

))]
− lnC .

Now choosing pjHj to maximize λj(ρj [pjHj ])− ln
(
λj
(
e[pjHj ]

))
, we get

λj(ρj [pjHj ])− ln
(
λj

(
e[pjHj ]

))
= −S(ρj) = λj(ρj ln ρj) .
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Next, suppose that the subadditivity inequality is true. Let the self adjoint operators
H1, . . . ,HN be given, and define

ρ =

λ
exp

 N∑
j=1

φj(Hj)

−1

exp

 N∑
j=1

φj(Hj)

 .

Them by Lemma 8.6,

ln

λ
exp

 N∑
j=1

φj(Hj)

 = λ

ρ
 N∑
j=1

φj(Hj)

+ S(ρ)

=
N∑
j=1

λj [ρjHj ] + S(ρ)

≤
N∑
j=1

1
pj

[λj [ρj(pjHj)] + S(ρj)] + lnC

≤
N∑
j=1

1
pj

ln [λj (exp(pjHj))] + lnC

Proof of Theorem 8.3:
By Theorem 8.5, in order to prove Theorem 8.3, it suffices to prove the corresponding generalized

subadditivity of entropy inequality for tensor products of Hilbert spaces, which we now formulate
and prove.

The crucial tool that we use here is the strong subadditivity of the entropy; i.e., Theorem 6.6,
except that we shall use a slightly different indexing of the various partial traces that is better
adapted to our application.

Suppose, as in the case we are discussing, that we are given n separable Hilbert spaces
H1, . . . ,Hn. As before, let K denote their tensor product, and for any non empty subset J of
{1, . . . , n}, let KJ denote ⊗j∈JHj .

For a density matrix ρ on K, and any non empty subset J of {1, . . . , n}, define ρJ = TrJc to be
the density matrix on KJ induced by the natural injection of B(KJ) into B(K). As noted above,
ρJ is nothing other than the partial trace of ρ over the complementary product of Hilbert spaces,
⊗j /∈JHj .

The strong subadditivity of the entropy of Theorem 6.6 can be formulated as the statement
that for all nonempty J,K ⊂ {1, . . . , n},

S(ρJ) + S(ρK) ≥ S(ρJ∪K) + S(ρJ∩K) . (8.12)

In case J ∩K = ∅, it reduces to the ordinary subadditivity of the entropy, which is the elementary
inequality

S(ρJ) + S(ρK) ≥ S(ρJ∪K) for J ∩K = ∅ . (8.13)
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Combining these, we have

S(ρ{1,2}) + S(ρ{2,3}) + S(ρ{3,1}) ≥ S(ρ{1,2,3}) + S(ρ{2}) + S(ρ{1,3})

≥ 2S(ρ{1,2,3}) ,

(8.14)

where the first inequality is the strong subadditivity (8.12) and the second is the ordinary subad-
ditivity (8.13). Thus, for n = 3 and J1 = {1, 2}, J2 = {2, 3} and J3 = {3, 1}, we obtain

1
2

N∑
j=1

S(ρJj ) ≥ S(ρ) .

8.7 THEOREM. Let J1, . . . , JN be N non empty subsets of {1, . . . , n} For each i ∈ {1, . . . , n},
let p(i) denote the number of the sets J1, . . . , JN that contain i, and let p denote the minimum of
the p(i). Then

1
p

N∑
j=1

S(ρJj ) ≥ S(ρ) (8.15)

for all density matrices ρ on K = H1 ⊗ · · · ⊗ Hn.

Proof: Simply use strong subadditivty to combine overlapping sets to produce as many “complete”
sets as possible, as in the example above. Clearly, there can be no more than p of these. If p(i) > p

for some indices i, there will be “left over” partial sets. The entropy is always non negative, and
therefore, discarding the corresponding entropies gives us

∑N
j=1 S(ρJj ) ≥ pS(ρ), and hence the

inequality.
Proof of Theorem 8.3: This now follows directly from Theorem 8.5 and Theorem 8.7.
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applications en physique mathêmatique (Colloque CNRS, Marseille, juin 1977) Editions du CNRS, Paris, 1979,

pp. 383-396.
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[31] G.H. Hardy, J.E. Littlewood and G. Pólya: Inequalities. Cambridge University Press, Cambridge, 1934



64

[32] T Kato: Notes on some inequalities for linear operators, Math. Ann., 125, 208–212 (1952)

[33] H. Kosaki: Applications of the complex interpolation method to a von Neumann algebra: noncommutative Lp

-spaces. J. Funct. Anal., 56, 1984, no. 1, pp. 29-78.

[34] E.H. Lieb: Convex trace functions and the Wigner-Yanase-Dyson Conjecture, Adv. Math. 11 267-288 (1973)

[35] E.H. Lieb: Some convexity and subadditivity properties of entropy, Bull. Amer. Math. Soc. 81, 1975, pp. 1-13.

[36] E.H. Lieb: Gaussian kernels have only Gaussian maximizers, Invent. Math. 102, 1980, pp. 179-208

[37] E.H. Lieb and M.B. Ruskai: Proof of the strong subadditivity of quantum-mechanical entropy, J. Math. Phys.

14, 1973, pp. 1938-1941.

[38] E.H. Lieb and M.B. Ruskai: Some operator inequalities of the Schwarz type, Adv. in Math. 12, 269-273 (1974).

[39] E.H. Lieb and W. Thirring, Inequalities for the moments of the eigenvalues of the Schrödinger hamiltonian and

their relation to Sobolev inequalities, in Studies in Mathematical Physics, E.H. Lieb, B. Simon, A. Wightman

eds., Princeton University Press, 269-303 (1976).

[40] E. Nelson: Notes on non-commutative integration, Jour. Funct. Analysis, 15, 1974, pp. 103-116

[41] D. Petz: A variational expression for the relative entropy, Comm. Math. Phys., 114, 1988, pp. 345–349

[42] G. Pisier. Non-commutative vector valued Lp–spaces and completely p–summing maps Astérisque, 247, Math.
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